

Sheffield Resources Ltd ACN 125 811 083 14 Prowse Street West Perth WA

# 31 January 2013

# QUARTERLY REPORT FOR PERIOD ENDING 31 DECEMBER 2012

# HIGHLIGHTS

#### Dampier HMS project

- Maiden Mineral Resource for the Thunderbird HMS deposit of 1.374Bt @ 6.1% HM for 84Mt contained HM, including 5.8Mt zircon, 1.3Mt rutile, 3.6Mt leucoxene and 35Mt ilmenite (Indicated & Inferred)
- Includes coherent high grade component of **517Mt** @ **10.1% HM** (Indicated & Inferred) which presents as an attractive target for initial development studies
- Thunderbird is a globally significant mineral sands discovery
- Metallurgical testwork is underway on a 6 tonne bulk sample results expected Q1 2013
- Aboriginal Heritage surveys clear Argo prospect for drilling in 2013 field season

#### Red Bull nickel project

- Heliborne VTEM survey completed; preliminary results include 4 high order EM anomalies (3 of which are associated with magnetic anomalies) and over 10 second order EM anomalies
- Grant of key exploration licence E69/3052 on 11 December 2012
- Fixed loop EM surveys and soil sampling commenced over high priority targets

#### Eneabba HMS project

- Resource upgrade for Yandanooka deposit: 95.9Mt @ 2.3% HM, containing 2.25Mt HM (Measured, Indicated and Inferred), including a higher grade component of 59.8Mt @ 3.1% HM (Measured, Indicated and Inferred)
- Eneabba Project resource inventory increased to 5.7Mt of contained HM
- Positive drilling results from Irwin extend the strike of mineralisation by 3km

#### As at 31/12/12:

| Issued Shares | 98.6M   | ASX Code      | SFX    | Closing Price | \$0.55 |
|---------------|---------|---------------|--------|---------------|--------|
| Market Cap    | \$54.2M | Cash Reserves | \$6.0M |               |        |

#### **THUNDERBIRD RESOURCE - A MAJOR MILESTONE**

During the quarter the Company completed the maiden mineral resource estimate of **1.374Bt @ 6.1% HM** (Indicated & Inferred) for the Thunderbird prospect on the Dampier HMS project. The resource is based on a 7,517m drilling programme completed in Q3 2012 and was delivered just 15 months after the grant of the tenement.

The large size and high grade of the resource place Thunderbird within the top tier of HMS deposits globally and confirm Dampier as Sheffield's flagship project.

The next important milestone for Thunderbird is the results of initial metallurgical testwork currently underway on a 6 tonne bulk sample.

No drilling was undertaken during the quarter.

Exploration expenditure during the quarter is estimated to be \$1,681,000.



Figure 1: Location of Sheffield's Projects

#### HEAVY MINERAL SANDS

## Dampier

During the quarter, the Company announced a maiden mineral resource of **1.374Bt @ 6.1% HM** (Indicated and Inferred) for **84Mt of contained HM** for the Thunderbird prospect at its Dampier heavy mineral sand (HMS) Project near Derby in the Kimberley Region of Western Australia (Table 1, Appendix 1).

|           |         | Mineral Re          | esources | Valuable HM Grade (In-situ) <sup>2</sup> |        |           |          |  |  |
|-----------|---------|---------------------|----------|------------------------------------------|--------|-----------|----------|--|--|
| Resource  | Cut-off | Material            | HM       | Zircon                                   | Rutile | Leucoxene | Ilmenite |  |  |
| Category  | HM%     | Million             | %        | %                                        | %      | %         | %        |  |  |
|           |         | Tonnes <sup>3</sup> |          |                                          |        |           |          |  |  |
| Indicated | 2.0     | 299                 | 7.2      | 0.50                                     | 0.11   | 0.31      | 2.1      |  |  |
| Inferred  | 2.0     | 1,075               | 5.8      | 0.40                                     | 0.09   | 0.25      | 1.7      |  |  |
| Total     | 2.0     | 1,374               | 6.1      | 0.42                                     | 0.10   | 0.26      | 1.8      |  |  |
| Indicated | 7.5     | 137                 | 11.5     | 0.79                                     | 0.18   | 0.49      | 3.3      |  |  |
| Inferred  | 7.5     | 379                 | 9.6      | 0.66                                     | 0.15   | 0.41      | 2.8      |  |  |
| Total     | 7.5     | 517                 | 10.1     | 0.70                                     | 0.16   | 0.44      | 2.9      |  |  |

Table 1: Thunderbird Prospect Mineral Resource<sup>1</sup> Summary

The resource includes a coherent high grade core of **517Mt** @ **10.1% HM** (Indicated and Inferred) containing **3.6Mt of zircon**, **0.8Mt of rutile**, **2.2Mt of leucoxene and 15.2Mt of ilmenite**. This zone, which averages 20m thickness, represents an attractive target for initial development studies. The in-situ valuable heavy mineral (VHM) grades for this zone of 0.70% zircon, 0.16% rutile, 0.44% leucoxene and 2.9% ilmenite place Thunderbird within the top tier of HMS deposits globally.

The resource is based on data from Sheffield's 2012 aircore drilling programme of 164 drill holes for 7,517m, which targeted the prospect over an 8km strike length.

Mineralisation at Thunderbird remains open in all directions. Due to the shallow dip of the deposit, approximately 40% of the total resource area has less than 3m of overburden.

Thunderbird is the first major mineral sands deposit to be discovered in the Canning Basin, which is emerging as a new mineral sands province. As an early mover, Sheffield has secured over 4,000km<sup>2</sup> of prospective tenure within the Canning Basin which it plans to aggressively explore for further large scale deposits (Figure 2).

The next key milestone, expected in late Q1 2013, will be the results of metallurgical testwork, currently being performed on a six tonne bulk sample from Thunderbird. Results from this work will pave the way for Scoping Studies to commence in Q2 2013.

The next drilling campaign, due to commence in May/June 2013, aims to:

- 1. increase the proportion of the resource in the Indicated category,
- 2. target extensions to the deposit, and
- 3. provide an initial test of the Argo deposit, located 12km to the west of Thunderbird.

Aboriginal Heritage surveys have cleared the Argo prospect for drilling.

<sup>&</sup>lt;sup>1</sup>Refer to Appendix 1 and ASX release dated 18 December 2012

<sup>&</sup>lt;sup>2</sup> The In-situ grade is determined by multiplying the percentage of HM by the percentage of each valuable heavy mineral within the heavy mineral assemblage.

<sup>&</sup>lt;sup>3</sup> Tonnes have been rounded to reflect the relative uncertainty of the estimate.

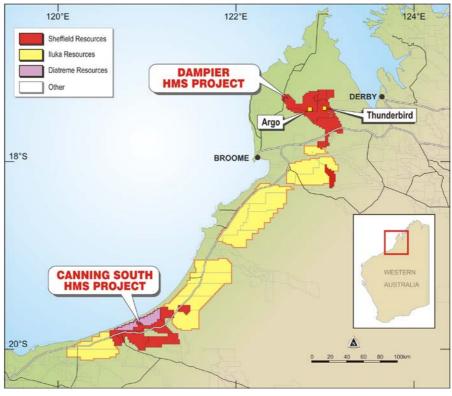



Figure 2: Location of Dampier Project

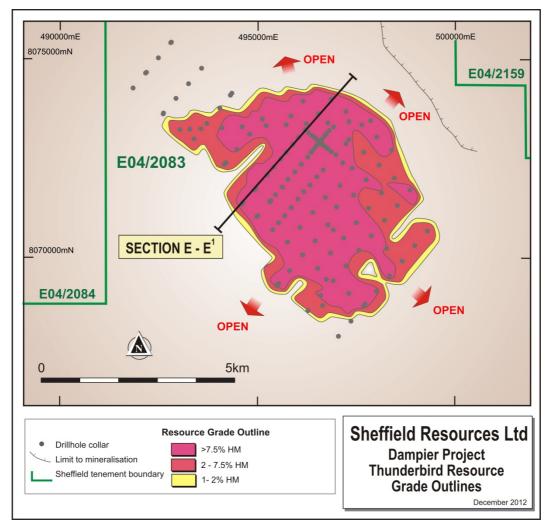



Figure 3: Thunderbird resource grade outline and drill collar plan

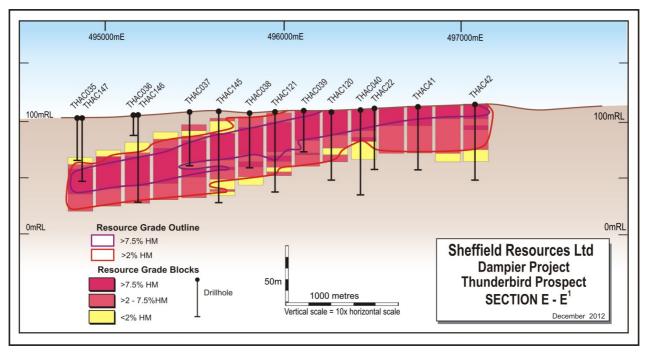



Figure 4: Section E-E' through the Thunderbird resource

# Eneabba

Sheffield's Eneabba Project contains six advanced exploration prospects: West Mine North, Ellengail, Yandanooka, Durack, Drummond Crossing and Irwin (Figure 5). Sheffield's strategy is to develop multiple HMS deposits capable of supporting a sequential mining operation.

#### Yandanooka

On 30 January 2013, the Company announced an upgraded Mineral Resource and positive metallurgical testwork results for the Yandanooka HMS deposit.

The Mineral Resource, which incorporates the results of a 4,518m aircore drilling programme undertaken at Yandanooka in 1H 2012, totals **95.9Mt @ 2.3% HM**, for 2.25Mt contained HM at 0.9% HM cut-off (Measured, Indicated and Inferred). The deposit contains 256,000t of zircon, 85,000t of rutile, 87,000t of leucoxene and 1,549,000t of ilmenite (at 66.5% TiO<sub>2</sub>) (Appendix 1).

Within this is a coherent higher-grade component of **59.8Mt** @ **3.1% HM**, containing 1.83Mt HM at a 1.4% HM cut-off (Measured, Indicated and Inferred).

The upgraded Yandanooka Mineral Resource represents a 22% increase in contained HM at a 0.9% HM cut-off compared with the maiden resource announced on 16 August 2011 of 1.84Mt contained HM (Indicated and Inferred). The additional heavy mineral is mostly derived from the discovery of an extension to the eastern side of the deposit.

Initial metallurgical process development testwork completed on an 8-tonne bulk sample indicates Yandanooka material is amenable to typical process methodologies using standard mineral sands processing equipment. High quality chloride-grade Ilmenite (66.5% TiO<sub>2</sub>); High-Ti leucoxene (70% and 80% TiO<sub>2</sub>) and primary and secondary zircon were produced.

Overall mineral recoveries, at this stage excluding re-circulation and inclusion of semi-processed streams, indicate recoveries for ilmenite, altered ilmenite (leucoxene) and zircon to be within the industry expected range.

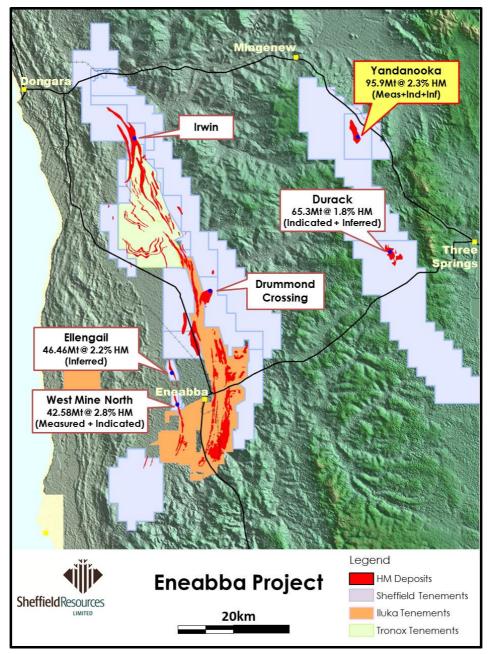



Figure 5: Location of Sheffield's projects in the Eneabba region

#### Irwin

Positive results were returned from drilling undertaken at Irwin during Q2 2012, extending the identified strike of mineralisation by 3km. Drilling intersected mineralised intervals of up to 31.5m width, for example:

- 31.5m @ 1.38% HM from surface (IRAC0048)
- 21m @ 2.15% HM from 18m depth (IRAC0061)
- 18m @ 2.2% HM from 1.5m depth (IRAC0051)
- 30m @ 1.2% HM from 10.5m depth (IRAC0040)
- 16.5m @ 2.23% HM from 31.5m depth (IRAC0038)
- 18m @ 1.66% HM from 9m depth (IRAC0037)

(Refer to Appendix 2 for full details).

The latest drilling results confirm Irwin as a large, low grade (1-2% HM) dunal-style deposit, with a very low slimes component (average 5.8% <53µm), and low oversize (average 3.6% >1mm). These are considered favourable attributes for high throughput dredge-mining and low cost processing techniques. The average overburden thickness is 14m, however portions of the deposit are exposed at surface (Figure 7).

These latest drilling results have outlined a mineralised area of 4km x 2km, with mineralisation remaining open to the east and north (Figure 6). This mineralisation is in addition to the Exploration Target<sup>4</sup> of **220-340 Mt @ 1.2-1.6% HM** for Irwin announced on 2 February 2012.

Irwin has a high-value heavy mineral assemblage comprising 10.0% Zircon, 7.4% Rutile, 2.3% Leucoxene and 58.7% Ilmenite, as determined by Qemscan analysis. Sheffield will conduct mineral assemblage testwork on this latest round of drilling during Q1 2013, and evaluate the potential for extension of the deposit to the east and north.

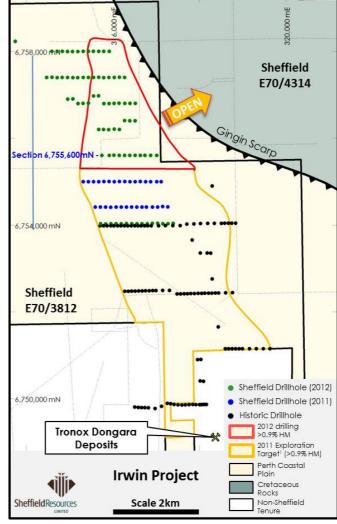



Figure 6: Irwin prospect collar plan

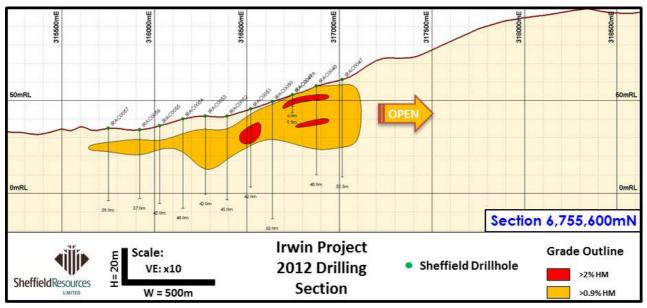



Figure 7: Irwin prospect cross section 6,755,600mN, looking north

<sup>&</sup>lt;sup>4</sup> Sheffield Resources has not yet reported Mineral Resources for Irwin and any discussion in relation to targets and Mineral Resources is conceptual in nature. There has been insufficient exploration to define a Mineral Resource and it is uncertain if further exploration will result in the determination of a Mineral Resource. Figures have been rounded to reflect the implied level of accuracy

#### **Drummond Crossing**

A maiden resource estimate for the Drummond Crossing deposit is in preparation. An updated scoping assessment of the Eneabba Project will be undertaken once the Drummond Crossing resource estimate has been completed.

## McCalls

The McCalls project, located 110km north of Perth, has an Inferred Resource of **4.4Bt @ 1.2% HM** containing **53Mt of HM** (see Appendix 1). Of this, 43 million tonnes is chloride grade ilmenite ranking it as one of the largest accumulations of this type of ilmenite in the world. The deposit also contains approximately 3.5 million tonnes of zircon and 1 million tonnes of rutile.

Results from 71 aircore drill holes completed during Q2 2012 are expected to be received during Q1 2013.

#### **RED BULL NICKEL**

Sheffield's Red Bull nickel project is located within 20km of Sirius Resources NL's (ASX:SIR) recent Nova nickel-copper discovery in the Fraser Range Nickel Province in Western Australia (Figure 8).

The project comprises two exploration licences with a combined area of 525km<sup>2</sup>. The northern tenement E69/3052 covers a substantial area of the prospective Fraser Complex metamorphic sequence. During the quarter, a new exploration licence, E28/2270 "Kitchener", was applied for over the northeastern segment of the Fraser Complex.

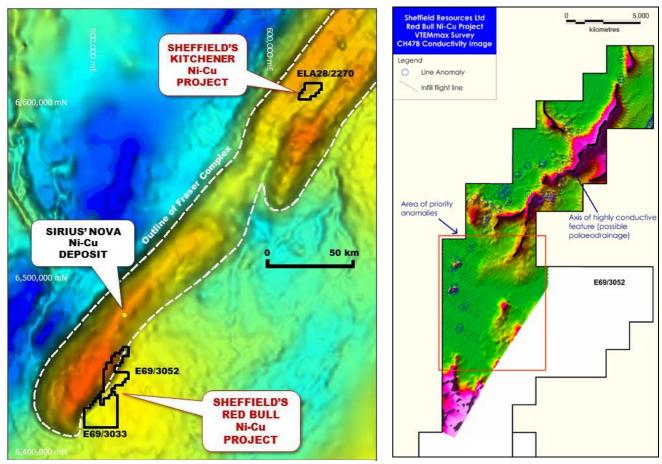
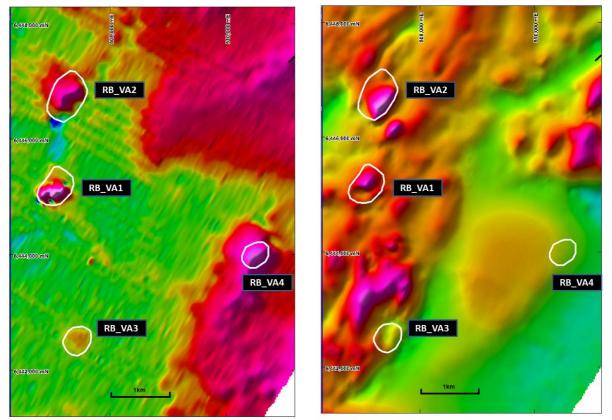



Figure 8: Location of Red Bull Project on a gravity image outlining the Fraser Complex


Figure 9: Late Channel B-Field EM image from the Red Bull VTEM survey

During the quarter, a VTEM survey of 1,235 line km was flown over a targeted area of 144km<sup>2</sup> on E69/3052. The northern half of the survey was flown on 100m spaced lines while 200m spaced lines were flown in the southern segment. Some 100m infill lines were flown over targets of interest in the southern segment (Figure 9).

Southern Geoscience Consultants (SGC), who were engaged by Sheffield to manage the programme and interpret the survey data, have identified four high order EM anomalies (RB\_VA1-4) from the preliminary survey data, three of which (RB\_VA1-3) show correlation with magnetic anomalies (Figures 10 & 11). The combination of EM conductors and magnetic anomalies may indicate the presence of pyrrhotite-pentlandite-chalcopyrite mineralisation. In addition, over ten second order VTEM anomalies have been identified. Full interpretation of the VTEM survey results will be undertaken after the final processed survey data is received in February 2013.

Sheffield commenced fieldwork at Red Bull, following grant of E69/3052 on 11 December 2012. Fixed Loop Time Domain Electromagnetic (FLTEM) surveys have been completed over VTEM anomalies RBVA1-3 and the survey has been expanded to include an additional 5 VTEM anomalies. Aboriginal Heritage surveys have also been completed and soil sampling programmes have commenced.

The FLTEM results and subsequent modelling are expected to provide robust targets which can then be fast tracked for drilling.



Figures 10 & 11: Late Channel B-field EM (left) and TMI magnetics (right) showing high-order priority targets RB\_VA1 to RB\_VA4. Note the correlating magnetic anomalies for targets RB\_VA1 to 3.

## IRON

Sheffield's Pilbara Iron Project comprises 6 exploration licences and one pending exploration licence application, all located in the eastern Pilbara, between Newman and Port Hedland (Figures 12 & 13).

Three exploration licences, E47/2642-I, E45/3822-I and E45/4029-I were granted during the quarter and exploration licence application E47/2594, located 12km northeast of Newman, was drawn first in a ballot, giving the application priority over competing applications.

Helicopter-assisted reconnaissance mapping and sampling was undertaken during the quarter. Five substantial new zones of high grade iron mineralisation were outlined: Tramlines and Fiery Jack on E47/2291, Thors Thunder and Chinook on E47/2280 and Dead Bullock on E47/4029. Additional mineralisation was discovered at three previously identified prospects: Panorama, Crucible and Top Forge (Figures 12 & 13, refer to ASX release dated 29 January 2013 for further details).

Significantly, four of the new mineralised zones are on Sheffield's Three Pools and Eagle Pool projects where the Company has previously outlined an Exploration Target<sup>5</sup> of **20-60Mt** @ **56-60% Fe** (see ASX release 1 December 2011). These projects are adjacent to Brockman Mining Ltd's (ASX:BCK) Pallas and Castor deposits which have combined Mineral Resources of 108Mt @ 58.3% Fe (BCK ASX release 16 October 2012). Mineralisation identified by Sheffield is contiguous with that of Brockman.

At Three Pools and Eagle Pool, iron mineralisation is primarily associated with the Boolgeeda Iron Formation which is known to host several significant iron deposits in the region including Brockman's Pallas, Castor, Sirius and Kalgan Creek deposits and Atlas Iron's Hickman deposits.

In the North Pilbara, Sheffield has identified substantial zones of iron enrichment at the Panorama and Dead Bullock projects which are located close to Atlas Iron Ltd's (ASX:AGO) Abydos and Mt Webber mine camps and within potential trucking distance to Port Hedland (Figure 13).

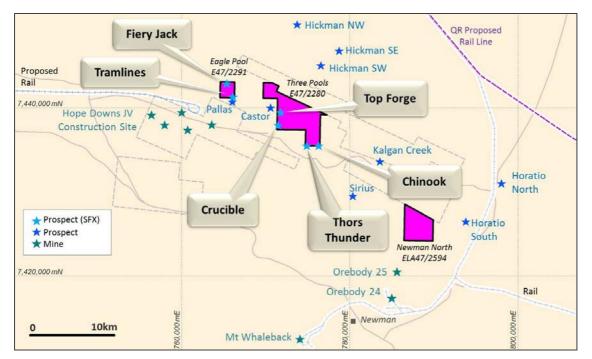



Figure 12: Sheffield's Three Pools project region, prospect locations, iron deposits and infrastructure

<sup>&</sup>lt;sup>5</sup> Sheffield Resources has not yet reported Mineral Resources for Three Pools and any discussion in relation to targets and Mineral Resources is conceptual in nature. There has been insufficient exploration to define a Mineral Resource and it is uncertain if further exploration will result in the determination of a Mineral Resource. Figures have been rounded to reflect the implied level of accuracy

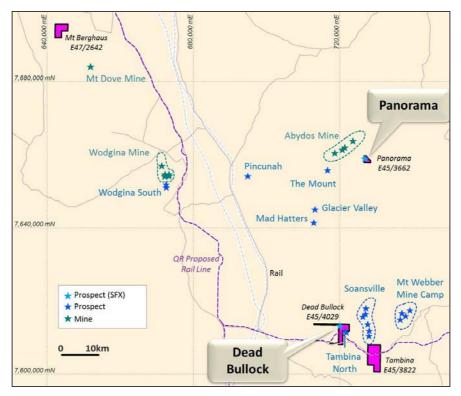



Figure 13: North Pilbara project region, prospect locations, iron deposits and infrastructure

# TALC

Sheffield has a dominant tenure position (1,152km<sup>2</sup>) covering the 175km-long Moora Talc Belt.

The Moora Talc Belt includes Imery's Three Springs Talc Mine which has been operating since 1948. Three Springs is renowned for producing premium grade microcrystalline talc from a relatively simple "dig-and-deliver" operation. Sheffield's strategy is to discover talc deposits of similar size and quality to the Three Springs deposit.

During Q2 2012 Sheffield completed a 2,070m programme of RC and diamond core drilling at three of its talc prospects: Prowaka South, Tilleys and Azharuddin. Holes were geologically logged, and samples of talc selected for chemical and optical brightness analysis. Results of this work are included as Tables 2-4 in Appendix 2.

The work to date on Sheffield's Moora Talc project has outlined deposits of talc with high chemical purity but sub-optimal brightness due, in part, to deep weathering. Sheffield will focus on building up its knowledge of the talc deposits identified to date and will investigate potential market niches for the various types of talc.

# **CASH POSITION**

As at 31 December 2012, the Company had cash reserves of approximately \$6.0 million.

During the quarter, \$532,000 was raised from the exercise of options.

Bm Quitty

Bruce McQuitty Managing Director 31 January 2013

#### COMPETENT PERSONS' STATEMENT - EXPLORATION RESULTS

The information in this announcement that relates to exploration results is based on information compiled by David Boyd. Mr Boyd is a full time employee of the Company. Mr Boyd is a Member of the Australasian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and the activity to which they are undertaking to qualify as Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ("JORC Code")'. Mr Boyd consents to the inclusion in the report of the matters based on their information in the form and context in which it appears.

#### COMPETENT PERSONS' STATEMENT - RESOURCE ESTIMATES

The information in this announcement that relates to resource estimation is based on information compiled by Mr Trent Strickland. Mr Strickland is a full time employee of Quantitative Group (QG) and a Member of the Australasian Institute of Mining and Metallurgy (AusIMM). Mr Strickland has sufficient experience in the minerals industry to satisfy the requirements to act as the competent person for this estimate as defined in the 2004 Edition of the Australasian Code for Reporting of Mineral Resources and Ore Reserves. Mr Strickland consents to the inclusion in this report of the Durack Mineral Sands resource estimate.

The information in this web page that relates to reporting of resource and exploration results is based on information compiled under the guidance of Mark Teakle. Mr Teakle is an employee of the Company. Mr Teakle is a Member of the Australasian Institute of Geoscientists and the Australasian Institute of Mining and Metallurgy and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and the activity to which they are undertaking to qualify as Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves ("JORC Code")'. Mr Teakle consents to the inclusion in the report of the matters based on their information in the form and context in which it appears.

# FORWARD LOOKING AND EXPLORATION TARGET STATEMENTS

Some statements in this report regarding estimates or future events are forward-looking statements. They involve risk and uncertainties that could cause actual results to differ from estimated results. Forward-looking statements include, but are not limited to, statements concerning the Company's exploration programme, outlook, target sizes and mineralised material estimates. They include statements preceded by words such as "seek", "expected", "target", "scheduled", "intends", "potential", "prospective" and similar expressions.

The terms "Target" and "Exploration Target", where used in this report, should not be misunderstood or misconstrued as an estimate of Mineral Resources and Reserves as defined by the JORC Code (2004), and therefore the terms have not been used in this context. Exploration Targets are conceptual in nature and it is uncertain if further exploration or feasibility study will result in the determination of a Mineral Resource or Reserve.

# **APPENDIX 1: MINERAL RESOURCES**

| Deposit         | Resource<br>Category | Zircon<br>(kt)* | Rutile<br>(kt)* | Leuc.<br>(kt)* | llmenite<br>(kt)* | Total VHM<br>(kt)* |
|-----------------|----------------------|-----------------|-----------------|----------------|-------------------|--------------------|
| Thunderbird     | Indicated            | 1,483           | 344             | 924            | 6,256             | 9,007              |
| Thunderbird     | Inferred             | 4,270           | 990             | 2,661          | 18,007            | 25,927             |
| Yandanooka      | Measured             | 13              | 2               | 3              | 87                | 105                |
| Yandanooka      | Indicated            | 240             | 81              | 83             | 1,439             | 1,843              |
| Yandanooka      | Inferred             | 4               | 1.3             | 2              | 23                | 29                 |
| Durack          | Indicated            | 144             | 29              | 52             | 703               | 928                |
| Durack          | Inferred             | 26              | 4.6             | 13             | 121               | 164                |
| Ellengail       | Inferred             | 92              | 90              | 20             | 658               | 860                |
| West Mine North | Measured             | 18              | 33              | 42             | 200               | 293                |
| West Mine North | Indicated            | 71              | 87              | 46             | 506               | 709                |
| McCalls         | Inferred             | 3,491           | 1,063           | 2,576          | 42,911            | 50,041             |
| Total           | Measured             | 31              | 35              | 45             | 287               | 398                |
| Total           | Indicated            | 1,938           | 540             | 1,104          | 8,904             | 12,487             |
| Total           | Inferred             | 7,882           | 2,149           | 5,271          | 61,718            | 77,021             |
| Total           | All                  | 9,851           | 2,725           | 6,421          | 70,910            | 89,906             |

Table 1: Sheffield's contained Valuable HM (VHM) Resource inventory<sup>1</sup> at 30 January 2013

\* Tonnes have been rounded to reflect the relative uncertainty of the estimates. <sup>1</sup> The contained HM tonnages shown in the Table above are sourced from Table 2, below.

|         |                 |                      |                    |                   | ory at so same | 2       |                       |            |                    |             | Mineral <i>i</i> | Assemblage | <del>ر</del> |
|---------|-----------------|----------------------|--------------------|-------------------|----------------|---------|-----------------------|------------|--------------------|-------------|------------------|------------|--------------|
| Project | Deposit         | Resource<br>Category | Cut-off<br>(% HM)⁴ | Material<br>(Mt)* | Bulk Density   | HM<br>% | Slimes % <sup>4</sup> | Osize<br>% | Insitu HM<br>(Mt)* | Zircon<br>% | Rutile<br>%      | Leuc.<br>% | llm.<br>%    |
|         | Thunderbird     | Indicated            | 2.0                | 299               | 2.1            | 7.2     | 19                    | 14         | 21.5               | 6.9         | 1.6              | 4.3        | 29           |
| Dampier | Thunderbird     | Inferred             | 2.0                | 1,075             | 2.1            | 5.8     | 17                    | 16         | 61.9               | 6.9         | 1.6              | 4.3        | 29           |
| Total D | Total Dampier   | All                  | 2.0                | 1,374             | 2.1            | 6.1     | 17                    | 15         | 83.4               | 6.9         | 1.6              | 4.3        | 29           |
|         | Yandanooka      | Measured             | 0.9                | 2.9               | 2.0            | 4.1     | 15                    | 14         | 0.12               | 10.6        | 1.9              | 2.2        | 72           |
|         | Yandanooka      | Indicated            | 0.9                | 90.1              | 2.0            | 2.3     | 16                    | 15         | 2.09               | 11.5        | 3.9              | 3.9        | 69           |
|         | Yandanooka      | Inferred             | 0.9                | 2.8               | 2.0            | 1.2     | 18                    | 21         | 0.03               | 11.2        | 3.9              | 4.6        | 68           |
|         | Yandanooka      | All                  | 0.9                | 95.9              | 2.0            | 2.3     | 16                    | 15         | 2.24               | 11.4        | 3.8              | 3.9        | 69           |
|         | Durack          | Indicated            | 0.9                | 50.3              | 2.0            | 2.0     | 15                    | 21         | 1.02               | 14          | 2.8              | 5.1        | 69           |
|         | Durack          | Inferred             | 0.9                | 15.0              | 1.9            | 1.2     | 14                    | 17         | 0.18               | 14          | 2.5              | 7.2        | 66           |
|         | Durack          | All                  | 0.9                | 65.3              | 2.0            | 1.8     | 15                    | 20         | 1.20               | 14          | 2.8              | 5.6        | 68           |
| Eneabba | Ellengail       | Inferred             | 0.9                | 46.45             | 2.0            | 2.2     | 15.6                  | 2.1        | 1.04               | 8.9         | 8.7              | 1.9        | 63.5         |
|         | Ellengail       | All                  | 0.9                | 46.45             | 2.0            | 2.2     | 15.6                  | 2.1        | 1.04               | 8.9         | 8.7              | 1.9        | 63.5         |
|         | West Mine North | Measured             | 0.9                | 6.47              | 2.0            | 5.6     | 14.8                  | 1.2        | 0.36               | 4.9         | 9.1              | 11.6       | 54.9         |
|         | West Mine North | Indicated            | 0.9                | 36.11             | 1.9            | 2.3     | 13.1                  | 2.8        | 0.84               | 8.4         | 10.3             | 5.4        | 60.0         |
|         | West Mine North | All                  | 0.9                | 42.58             | 1.9            | 2.8     | 13.4                  | 2.5        | 1.21               | 7.9         | 10.1             | 6.4        | 59.2         |
|         | Total Eneabba   | Measured             | 0.9                | 9.4               | 2.0            | 5.2     | 15                    | 5          | 0.48               | 6.7         | 6.8              | 8.7        | 60           |
|         | Total Eneabba   | Indicated            | 0.9                | 176.6             | 2.0            | 2.2     | 15                    | 14         | 3.96               | 11.6        | 4.9              | 4.6        | 67           |
|         | Total Eneabba   | Inferred             | 0.9                | 64.2              | 2.0            | 1.9     | 15                    | 6          | 1.25               | 10.2        | 7.1              | 3.3        | 64           |
|         | Total Eneabba   | All                  | 0.9                | 250               | 2.0            | 2.3     | 15                    | 12         | 5.69               | 11.1        | 5.5              | 4.4        | 66           |
| McCalls | McCalls         | Inferred             | 0.9                | 4,431             | 2.3            | 1.2     | 26.5                  | 1.4        | 53                 | 6.6         | 2.0              | 4.9        | 80.8         |
|         | Total McCalls   | All                  | 0.9                | 4,431             | 2.3            | 1.2     | 26.5                  | 1.4        | 53                 | 6.6         | 2.0              | 4.9        | 80.8         |

Table 2: Sheffield's Eneabba Project Mineral Resource<sup>2</sup> Inventory at 30 January 2013

\*Tonnes have been rounded to reflect the relative uncertainty of the estimate.

<sup>2</sup> This estimate is classified and reported in a manner compliant with the JORC code and guidelines (JORC, 2004). Further details on the Mineral Resource at each deposit can be found in this document and on the ASX Announcements page of the Company's website. <sup>3</sup> The Mineral Assemblage is represented as the percentage of the Heavy Mineral (HM) component of the deposit, as determined by QEMSCAN. TiO<sub>2</sub> minerals defined according to the following ranges: Eneabba Project: Rutile >95% TiO<sub>2</sub>; Leucoxene 85-95% TiO<sub>2</sub>; Ilmenite <55-85% TiO<sub>2</sub>; Dampier Project: Rutile >95% TiO<sub>2</sub>; Leucoxene 70-95% TiO<sub>2</sub>; Ilmenite 40-70% TiO<sub>2</sub>. <sup>4</sup> West Mine North and McCalls are reported below a 35% Slimes upper cutoff

# **APPENDIX 2: IRWIN DRILL RESULTS**

# **Results Tabulation**

Results of heavy liquid separation (HLS) are tabulated below. HLS using TBE, screen sizes: slimes -53µm, oversize +1mm. Coordinates used throughout are MGA Zone 50 (GDA94), all holes drilled vertically.

Table 1: Irwin aircore drill results. Intervals calculated using 0.9% HM cut with 6m minimum width and maximum 6m internal waste; "including" intervals using 2% HM cut, 3m minimum width and maximum 3m internal waste.

| Hole ID   | Easting | Northing   | Depth From<br>(m) | Depth To<br>(m) | Interval Width<br>(m) | HM<br>wt% | Slimes<br>wt% | Osize<br>wt% |
|-----------|---------|------------|-------------------|-----------------|-----------------------|-----------|---------------|--------------|
| IRAC0033  | 315841  | 6754026    | 22.5              | 28.5            | 6.0                   | 1.09      | 2.5           | 1.8          |
| IRAC0033  | 315841  | 6754026    | 33.0              | 42.0            | 9.0                   | 1.22      | 4.5           | 5.0          |
| IRAC0034  | 315958  | 6754029    | 15.0              | 21.0            | 6.0                   | 1.18      | 3.5           | 2.5          |
| IRAC0035  | 316080  | 6754028    | 10.5              | 25.5            | 15.0                  | 1.38      | 2.5           | 2.5          |
| IRAC0036  | 316198  | 6754029    | 12.0              | 30.0            | 18.0                  | 1.51      | 3.4           | 2.0          |
|           |         | including: | 22.5              | 27.0            | 4.5                   | 2.21      | 1.6           | 0.1          |
| IRAC0037  | 316316  | 6754031    | 9.0               | 27.0            | 18.0                  | 1.66      | 3.1           | 1.5          |
|           |         | including: | 16.5              | 21.0            | 4.5                   | 2.38      | 2.0           | 0.1          |
| IRAC0038  | 316442  | 6754028    | 7.5               | 19.5            | 12.0                  | 1.64      | 3.7           | 3.0          |
|           |         | including: | 13.5              | 16.5            | 3.0                   | 2.16      | 4.1           | 0.1          |
| IRAC0038  | 316442  | 6754028    | 31.5              | 48.0            | 16.5                  | 2.23      | 1.3           | 3.6          |
|           |         | including: | 34.5              | 37.5            | 3.0                   | 3.13      | 2.3           | 1.2          |
| IRAC0039  | 316559  | 6754029    | 10.5              | 24.0            | 13.5                  | 1.36      | 5.8           | 3.8          |
| IRAC0040  | 316678  | 6754028    | 10.5              | 40.5            | 30.0                  | 1.20      | 3.1           | 2.5          |
| IRAC0041  | 316798  | 6754030    | 12.0              | 27.0            | 15.0                  | 1.48      | 3.8           | 4.4          |
| IRAC0042  | 316916  | 6754037    | 12.0              | 25.5            | 13.5                  | 1.09      | 8.2           | 18.1         |
| IRAC0043  | 317038  | 6754039    | 12.0              | 28.5            | 16.5                  | 1.33      | 8.9           | 14.6         |
| IRAC0043  | 317038  | 6754039    | 33.0              | 40.5            | 7.5                   | 0.97      | 3.1           | 0.5          |
| IRAC0044  | 317159  | 6754028    | 33.0              | 43.5            | 10.5                  | 1.21      | 5.8           | 0.7          |
| IRAC0045  | 317280  | 6754030    | 37.5              | 49.5            | 12.0                  | 1.19      | 4.2           | 1.2          |
| IRAC0047  | 317016  | 6755602    | 3.0               | 24.0            | 21.0                  | 1.03      | 10.9          | 6.9          |
| IRAC0047  | 317016  | 6755602    | 30.0              | 36.0            | 6.0                   | 1.04      | 2.7           | 1.2          |
| IRAC0048  | 316876  | 6755602    | 0.0               | 31.5            | 31.5                  | 1.38      | 9.8           | 7.1          |
|           |         | including: | 4.5               | 7.5             | 3.0                   | 2.22      | 17.6          | 14.8         |
|           |         | including: | 18.0              | 21.0            | 3.0                   | 2.52      | 10.7          | 3.4          |
| IRAC0049  | 316745  | 6755601    | 0.0               | 6.0             | 6.0                   | 1.81      | 7.7           | 1.2          |
| IRAC0049A | 316745  | 6755601    | 0.0               | 9.5             | 9.5                   | 1.67      | 8.8           | 4.8          |
|           |         | including: | 1.5               | 4.5             | 3.0                   | 2.19      | 6.0           | 0.8          |
| IRAC0050  | 316637  | 6755602    | 1.5               | 18.0            | 16.5                  | 1.17      | 6.5           | 6.1          |
| IRAC0051  | 316520  | 6755603    | 1.5               | 19.5            | 18.0                  | 2.20      | 3.2           | 1.5          |
|           |         | including: | 9.0               | 19.5            | 10.5                  | 2.87      | 2.1           | 1.1          |
| IRAC0052  | 316393  | 6755603    | 9.0               | 22.5            | 13.5                  | 1.48      | 2.1           | 0.5          |
| IRAC0053  | 316277  | 6755604    | 6.0               | 13.5            | 7.5                   | 1.48      | 4.8           | 2.9          |
| IRAC0053  | 316277  | 6755604    | 21.0              | 27.0            | 6.0                   | 1.17      | 1.8           | 0.5          |
| IRAC0054  | 316154  | 6755604    | 7.5               | 15.0            | 7.5                   | 1.32      | 4.8           | 2.5          |
| IRAC0056  | 315920  | 6755601    | 4.5               | 15.0            | 10.5                  | 1.15      | 4.4           | 0.9          |
| IRAC0058  | 316155  | 6756201    | 0.0               | 7.5             | 7.5                   | 1.11      | 13.1          | 5.1          |

| Hole ID  | Easting | Northing   | Depth From<br>(m) | Depth To<br>(m) | Interval Width<br>(m) | HM<br>wt% | Slimes<br>wt% | Osize<br>wt% |
|----------|---------|------------|-------------------|-----------------|-----------------------|-----------|---------------|--------------|
| IRAC0059 | 316036  | 6756207    | 9.0               | 18.0            | 9.0                   | 1.11      | 4.6           | 0.4          |
| IRAC0060 | 315910  | 6756196    | 12.0              | 22.5            | 10.5                  | 1.28      | 1.3           | 0.3          |
| IRAC0061 | 315791  | 6756200    | 18.0              | 39.0            | 21.0                  | 2.15      | 1.6           | 0.5          |
|          |         | including: | 19.5              | 24.0            | 4.5                   | 5.04      | 1.9           | 0.3          |
|          |         | including: | 27.0              | 30.0            | 3.0                   | 2.17      | 1.8           | 0.7          |
| IRAC0062 | 315677  | 6756201    | 21.0              | 27.0            | 6.0                   | 1.39      | 2.5           | 0.6          |
| IRAC0064 | 316393  | 6756401    | 1.5               | 7.5             | 6.0                   | 1.16      | 6.5           | 2.3          |
| IRAC0065 | 316277  | 6756403    | 0.0               | 6.0             | 6.0                   | 1.49      | 7.3           | 3.2          |
| IRAC0065 | 316277  | 6756403    | 15.0              | 22.5            | 7.5                   | 1.78      | 7.7           | 3.9          |
|          |         | including: | 16.5              | 19.5            | 3.0                   | 2.56      | 9.4           | 6.1          |
| IRAC0066 | 316521  | 6756800    | 21.0              | 33.0            | 12.0                  | 1.41      | 7.5           | 6.0          |
| IRAC0069 | 316148  | 6756805    | 10.5              | 28.5            | 18.0                  | 1.13      | 3.8           | 6.9          |
| IRAC0070 | 315673  | 6756975    | 18.0              | 24.0            | 6.0                   | 1.26      | 2.1           | 1.4          |
| IRAC0071 | 315796  | 6756798    | 6.0               | 27.0            | 21.0                  | 1.09      | 4.4           | 7.0          |
| IRAC0072 | 316031  | 6756803    | 25.5              | 33.0            | 7.5                   | 1.60      | 1.5           | 0.5          |
| IRAC0073 | 315916  | 6756799    | 24.0              | 31.5            | 7.5                   | 1.21      | 1.0           | 0.4          |
| IRAC0074 | 315557  | 6756972    | 21.0              | 28.5            | 7.5                   | 1.12      | 3.0           | 1.6          |
| IRAC0089 | 315559  | 6757398    | 9.0               | 21.0            | 12.0                  | 0.93      | 7.1           | 1.2          |
| IRAC0090 | 315676  | 6757402    | 21.0              | 31.5            | 10.5                  | 1.04      | 10.3          | 0.9          |
| IRAC0092 | 315912  | 6757401    | 12.0              | 24.0            | 12.0                  | 1.37      | 12.7          | 6.0          |
| IRAC0094 | 316155  | 6757401    | 30.0              | 39.0            | 9.0                   | 1.55      | 3.7           | 1.2          |
| IRAC0096 | 315922  | 6757999    | 4.5               | 13.5            | 9.0                   | 1.07      | 4.0           | 0.4          |
| IRAC0096 | 315922  | 6757999    | 21.0              | 27.0            | 6.0                   | 1.08      | 11.6          | 11.0         |
| IRAC0097 | 315791  | 6758001    | 4.5               | 10.5            | 6.0                   | 0.98      | 9.2           | 4.9          |
| IRAC0101 | 315437  | 6757999    | 18.0              | 31.5            | 13.5                  | 1.15      | 3.3           | 1.8          |
| IRAC0103 | 315070  | 6757997    | 40.5              | 46.5            | 6.0                   | 1.36      | 26.8          | 0.9          |
| IRAC0106 | 314717  | 6758001    | 37.5              | 45.0            | 7.5                   | 1.31      | 3.9           | 2.2          |

| Prospect      | Hole ID | Depth<br>From (m) | Depth<br>To (m) | Interval<br>(m) | MgO<br>(%) | SiO₂<br>(%) | Fe <sub>2</sub> O <sub>3</sub><br>(%) | Al <sub>2</sub> O <sub>3</sub><br>(%) | CaO<br>(%) | P₂O₅<br>(%) | LOI (%)<br>(1000°) |
|---------------|---------|-------------------|-----------------|-----------------|------------|-------------|---------------------------------------|---------------------------------------|------------|-------------|--------------------|
| Prowaka South | PSRC001 | 46.0              | 49.0            | 3.0             | 27.9       | 62.8        | 1.31                                  | 1.49                                  | 0.24       | 0.124       | 5.6                |
|               | TIRC004 | 113.0             | 117.0           | 4.0             | 31.2       | 58.5        | 0.90                                  | 1.04                                  | 1.31       | 0.147       | 6.8                |
|               | TIRC008 | 57.0              | 62.0            | 5.0             | 30.4       | 61.1        | 2.24                                  | 0.69                                  | 0.15       | 0.092       | 5.0                |
|               | TIRC010 | 42.0              | 50.0            | 8.0             | 30.4       | 61.0        | 1.85                                  | 0.86                                  | 0.22       | 0.144       | 5.0                |
|               | TIDD001 | 48.0              | 50.0            | 2.0             | 30.7       | 61.2        | 1.59                                  | 0.78                                  | 0.05       | 0.023       | 5.0                |
| Tilleys       |         | 53.0              | 56.0            | 3.0             | 30.3       | 60.8        | 1.56                                  | 1.36                                  | 0.12       | 0.063       | 5.1                |
|               |         | 68.4              | 69.9            | 1.5             | 31.2       | 61.7        | 1.23                                  | 0.34                                  | 0.37       | 0.090       | 5.2                |
|               |         | 75.7              | 78.1            | 2.4             | 30.9       | 60.6        | 1.34                                  | 0.25                                  | 0.73       | 0.031       | 5.8                |
|               |         | 90.0              | 91.3            | 1.3             | 31.2       | 60.1        | 1.55                                  | 1.36                                  | 0.54       | 0.096       | 5.7                |
|               |         | 92.8              | 93.6            | 0.8             | 31.2       | 60.7        | 1.64                                  | 1.30                                  | 0.11       | 0.051       | 5.2                |
|               | AZDD001 | 52.6              | 61.8            | 9.2             | 31.1       | 62.1        | 0.96                                  | 0.50                                  | 0.18       | 0.007       | 4.7                |
|               | AZDD002 | 28.0              | 29.0            | 1.0             | 30.9       | 61.0        | 0.99                                  | 1.48                                  | 0.02       | 0.027       | 5.3                |
| Azharuddin    |         | 31.0              | 34.0            | 3.0             | 27.7       | 66.5        | 0.73                                  | 0.38                                  | 0.02       | -0.001      | 4.3                |
|               |         | 48.0              | 51.0            | 3.0             | 27.6       | 64.7        | 1.71                                  | 0.96                                  | 0.23       | 0.003       | 4.7                |
|               |         | 54.0              | 56.0            | 2.0             | 29.9       | 63.3        | 1.51                                  | 0.57                                  | 0.03       | 0.001       | 4.6                |

Table 2: Moora Talc Project 2012 drilling Talc chemistry.

Sample intervals are based on geological and chemical criteria determined by XRF (MgO >28%, SiO<sub>2</sub> >50%, Fe<sub>2</sub>O<sub>3</sub> <1.5%, Al<sub>2</sub>O<sub>3</sub> <1.5%, CaO <0.8% and LOI <6%). Core hole samples are quarter HQ/PQ core. Minimum reported width 1m.

|                |                      | Depth    | Depth  | Interval | Brightness | Brightness |    |      | CIE  |       | DIN6167 |
|----------------|----------------------|----------|--------|----------|------------|------------|----|------|------|-------|---------|
| Prospect       | Hole ID              | From (m) | To (m) | (m)      | Ry         | R457nm     | L  | a*   | b*   | WI    | YI      |
| Prowaka South  | PSRC001<br>#         | 46.0     | 48.0   | 2.0      | 76         | 60         | 90 | 2.1  | 15.4 | 4.0   | 30.1    |
|                | TIRC010 <sup>#</sup> | 42.0     | 47.0   | 5.0      | 68         | 57         | 86 | 1.8  | 11.1 | 14.2  | 23.3    |
|                |                      | 49.0     | 50.0   | 1.0      | 61         | 47         | 82 | 2.9  | 14.9 | -14.4 | 32.3    |
|                | TIDD001              | 48.0     | 50.0   | 2.0      | 74         | 62         | 89 | 1.9  | 11.1 | 21.1  | 22.8    |
| Tillova        |                      | 53.0     | 56.0   | 3.0      | 71         | 60         | 88 | 1.5  | 10.1 | 22.4  | 21.0    |
| Tilleys        |                      | 68.4     | 69.9   | 1.5      | 86         | 84         | 94 | -0.6 | 1.5  | 79.1  | 2.5     |
|                |                      | 75.7     | 78.1   | 2.4      | 87         | 86         | 95 | -0.6 | 1.5  | 80.5  | 2.4     |
|                |                      | 90.0     | 91.3   | 1.3      | 83         | 80         | 93 | -1.5 | 2.3  | 72.0  | 3.4     |
|                |                      | 92.8     | 93.6   | 0.8      | 85         | 82         | 94 | -1.2 | 2.4  | 73.8  | 3.7     |
|                | AZDD001              | 52.6     | 61.8   | 9.2      | 85         | 79         | 94 | 0.6  | 4.9  | 62.6  | 9.8     |
|                | AZDD002              | 28.0     | 29.0   | 1.0      | 83         | 70         | 93 | 1.0  | 11.9 | 29.0  | 22.6    |
| A = b = muddim |                      | 31.0     | 34.0   | 3.0      | 90         | 86         | 96 | 0.1  | 3.2  | 75.4  | 6.0     |
| Azharuddin     |                      | 48.0     | 49.0   | 1.0      | 77         | 69         | 90 | 1.3  | 7.5  | 41.7  | 15.6    |
|                |                      | 50.0     | 51.0   | 1.0      | 77         | 65         | 91 | 1.9  | 10.9 | 26.5  | 22.1    |
|                |                      | 54.0     | 56.0   | 2.0      | 79         | 69         | 91 | 1.3  | 9.2  | 36.2  | 18.5    |

Sample intervals are based on geological and chemical criteria. Core hole samples are quarter HQ/PQ core. Minimum reported width 1m. Talc intervals were analysed for optical properties including Brightness (R457 and Ry), CIE Colour (L, a\*, b\*), WI (CIE) and YI (DIN6167) by Sheffield. #Due to the drilling method optical properties for RC holes (PSRC001 and TIRC010) are likely to be biased lower than actual through the introduction of minor contaminants.

Chemical purity (low Fe<sub>2</sub>O<sub>3</sub>, low CaO, low LOI) and/or high levels of brightness (87% or greater GE Brightness, also known as R457 Brightness) are important properties for the various talc end use applications, with high brightness important for the largest end use sector – paper making.

| PROSPECT      | HOLEID  | East   | North   | AHDRL | DEPTH | TENEMENTID | DIP | AZIMUTH | DRILL_TYPE |
|---------------|---------|--------|---------|-------|-------|------------|-----|---------|------------|
|               | PSRC001 | 389409 | 6723430 | 247   | 77.0  | E70/3779   | -60 | 90.0    | RC         |
|               | PSRC002 | 389409 | 6723548 | 247   | 120.0 | E70/3779   | -60 | 90.0    | RC         |
| PROWAKA SOUTH | PSRC003 | 389411 | 6723308 | 247   | 78.0  | E70/3779   | -60 | 90.0    | RC         |
|               | PSRC004 | 389286 | 6723307 | 247   | 110.0 | E70/3779   | -60 | 90.0    | RC         |
|               | PSRC005 | 389171 | 6723307 | 247   | 66.0  | E70/3779   | -60 | 90.0    | RC         |
|               | TIDD001 | 403454 | 6697439 | 285   | 108.6 | E70/3778   | -60 | 120.0   | DIAMOND    |
|               | TIRC001 | 403489 | 6697487 | 286   | 29.0  | E70/3778   | -60 | 120.0   | RC         |
|               | TIRC002 | 403484 | 6697490 | 287   | 63.0  | E70/3778   | -60 | 120.0   | RC         |
|               | TIRC003 | 403480 | 6697492 | 286   | 117.0 | E70/3778   | -60 | 120.0   | RC         |
|               | TIRC004 | 403441 | 6697516 | 286   | 120.0 | E70/3778   | -60 | 120.0   | RC         |
|               | TIRC005 | 403391 | 6697546 | 285   | 120.0 | E70/3778   | -60 | 120.0   | RC         |
|               | TIRC006 | 403595 | 6697429 | 285   | 60.0  | E70/3778   | -60 | 120.0   | RC         |
| TILLEYS       | TIRC007 | 403481 | 6697356 | 282   | 60.0  | E70/3778   | -70 | 120.0   | RC         |
|               | TIRC008 | 403434 | 6697381 | 282   | 87.0  | E70/3778   | -60 | 120.0   | RC         |
|               | TIRC009 | 403318 | 6697310 | 277   | 120.0 | E70/3778   | -70 | 120.0   | RC         |
|               | TIRC010 | 403371 | 6697282 | 278   | 72.0  | E70/3778   | -70 | 120.0   | RC         |
|               | TIRC011 | 403426 | 6697253 | 278   | 72.0  | E70/3778   | -70 | 120.0   | RC         |
|               | TIRC012 | 403269 | 6697338 | 276   | 123.0 | E70/3778   | -70 | 120.0   | RC         |
|               | TIRC013 | 403378 | 6697412 | 282   | 123.0 | E70/3778   | -60 | 120.0   | RC         |
|               | TIRC014 | 403328 | 6697439 | 281   | 108.0 | E70/3778   | -60 | 120.0   | RC         |
|               | AZDD001 | 410711 | 6668309 | 288   | 111.3 | E70/3776   | -90 | 0.0     | DIAMOND    |
| AZHARUDDIN    | AZDD002 | 410652 | 6668441 | 290   | 138.5 | E70/3776   | -90 | 0.0     | DIAMOND    |

 Table 4: Moora Talc Project 2012 drilling collar locations – all drillholes.

Coordinates are MGA Zone 50, GDA 94, collar dip and azimuth shown.