

ASX and Media Release

09 February, 2015

EXCEPTIONALLY HIGH GRADES FROM INFILL DRILLING AT THUNDERBIRD MINERAL SANDS PROJECT

KEY POINTS

- Results confirm extensive, high grade, near-surface mineralisation in up-dip region of deposit which can be targeted in early production years
- Thunderbird regional exploration drilling results to be reported in coming weeks
- Pre-feasibility Study remains on schedule to be finalised in Q1 2015

Sheffield Resources Limited ("Sheffield" "the Company") (ASX:SFX) today announced exceptionally high grade results from infill drilling at its 100% owned Thunderbird Mineral Sands Project, located near Derby in northwest Western Australia.

Thunderbird has total mineral resources of **3.205Bt @ 6.8% HM** (Measured, Indicated and Inferred), containing 95Mt of valuable heavy mineral, including a high grade component of **1.080Bt @ 11.8% HM** (see resources tabulation in Appendix 2).

The results relate to 51 infill aircore drill holes completed during October 2014 and follow the Mineral Resource update announced on 12 December 2014. Significant results include:

- 18m @ 21.3% HM from 0m (THAC528)
- 15m @ 19.5% HM from 1.5m (THAC526)
- 12m @ 19.2% HM from 0m (THAC539)
- 16.5m @ 18.9% HM from 1.5m (THAC529)
- 12m @ 18.9% HM from 0m (THAC548)
- 21m @ 18.8% HM from 7.5m (THAC544)
- 19.5m @ 17.6% HM from 1.5m (THAC521)
- 21m @ 17.4% HM from 7.5m (THAC523)
- 21m @ 16.9% HM from 0m (THAC534)
- 25.5m @ 16.5% HM from 1.5m (THAC560)

(>7.5% HM cut-off, refer to Table 1 and Appendix 1 for full details).

The drilling targeted a high grade, up-dip portion of the deposit currently scheduled for early production years. This area of approximately $3km^2$ has now been drilled on a 125m x 250m pattern, confirming excellent continuity of grade and consistent widths of mineralisation (Figures 1 - 3).

Sheffield's Managing Director Bruce McQuitty said: "These are a terrific set of drill results.

"They underscore one of the key strengths of the Thunderbird deposit which is the presence of an extensive zone of high grade mineralisation located close to surface. Our Scoping Study delivered higher margins in early production years from this region so it presents an ideal scenario for a start-up operation.

"These drill results are not available in time for the current Pre-feasibility Study, which will be based on the December 2014 resource update, however they have potential to be of significant benefit to the project economics and will be incorporated into resource and PFS updates scheduled for Q3 2015.

"We look forward to delivering results from exploration drilling in the broader region around Thunderbird in the next few weeks."

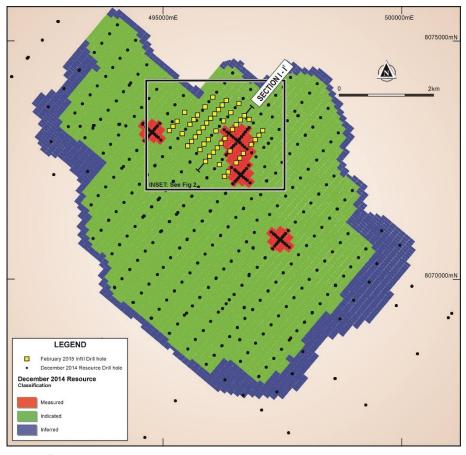


Figure 1: Plan view of Thunderbird Deposit showing Mineral Resource Classifications and location of infill drill holes reported in this release

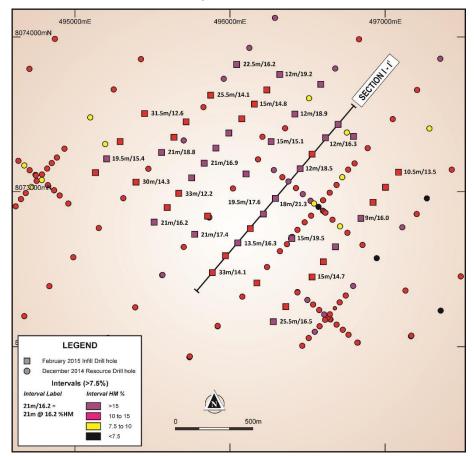


Figure 2: Inset from Figure 1, detail of infill drill holes coloured by interval grade (at >7.5% HM cut-off)

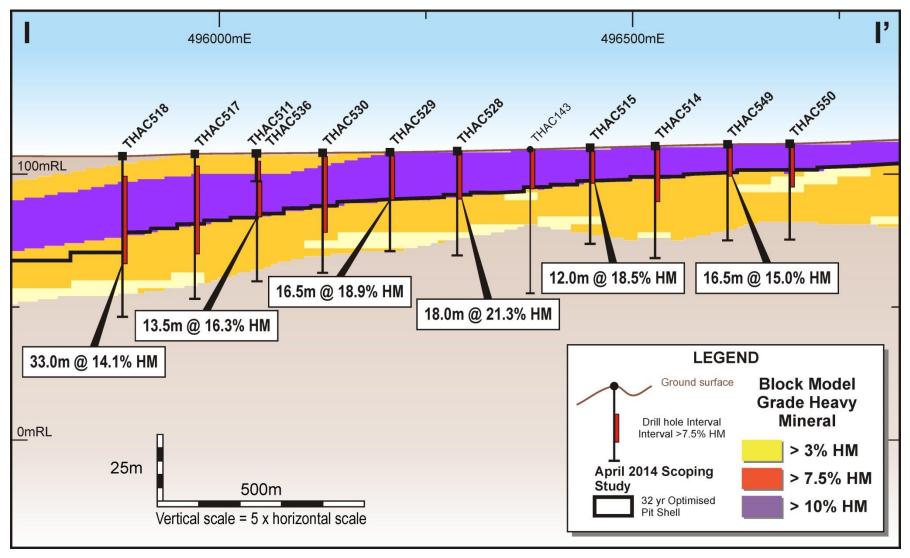


Figure 3: Cross-section I-I' through infill drilling at the Thunderbird deposit showing the current resource and drill holes from this ASX release

Regional Exploration

Results from 3,000m of exploration drilling on Sheffield's extensive Dampier tenement holding are expected in the next few weeks. This drilling, undertaken in October 2014, targeted interpreted palaeoshoreline positions and linear magnetic features (potentially associated with strand lines) in previously undrilled areas to the north and south of Thunderbird.

Pre-feasibility Study

The 2014 Scoping Study demonstrated Thunderbird has the potential to generate consistently strong cash margins from globally significant levels of production over an initial 32-year mine life.

The current Pre-feasibility Study is based on the December 2014 resource update which substantially improved on the March 2014 resource used in the Scoping Study in the following areas:

- 46% increase in high grade component of resource to 1.08Bt @ 11.8% HM
- Addition of new high grade component of resource in near-surface up-dip region of the deposit, comprising 95Mt @ 12.0% HM (Indicated) and 25Mt @ 12.2% HM (Inferred) (at 7.5% HM cut-off)
- The Scoping Study excluded Inferred Resources, most of which have now been upgraded to the Indicated Resource category and will be included in the PFS. (See ASX release dated 12 December 2014 for full details).

The Pre-feasibility Study is well advanced and is on schedule to be finalised during Q1 2015.

ends

For further information please contact:

Bruce McQuitty Managing Director Tel: 08 6424 8440 <u>bmcquitty@sheffieldresources.com.au</u> Media: Luke Forrestal Cannings Purple Tel: 08 6314 6300 Iforrestal@canningspurple.com.au

Website: <u>www.sheffieldresources.com.au</u>

COMPLIANCE STATEMENTS

EXPLORATION RESULTS

The information in this report that relates to Exploration Results is based on information compiled by Mr David Boyd, a Competent Person who is a Member of Australian Institute of Geoscientists (AIG). Mr Boyd is a full-time employee of Sheffield Resources Ltd and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Boyd consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

PREVIOUSLY REPORTED INFORMATION

This report includes information that relates to Exploration Results, Mineral Resources and Scoping Study results which were prepared and first disclosed under the JORC Code 2012. The information was extracted from the Company's previous ASX announcements as follows:

- "THUNDERBIRD HIGH GRADE RESOURCE SURPASSES ONE BILLION TONNES" 12 December 2014
- "STANDOUT DRILLING RESULTS EXTEND HIGH GRADE MINERALISATION AT THUNDERBIRD MINERAL SANDS PROJECT" 10 November, 2014
- "THUNDERBIRD MINERAL SANDS PROJECT UPDATE" 17 September, 2014
- "SCOPING STUDY HIGHLIGHTS THUNDERBIRD'S EXCEPTIONAL FINANCIAL RETURNS" 14 April, 2014

These announcements are available on Sheffield Resources Ltd's web site <u>www.sheffieldresources.com.au</u>.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and, in the case of reporting of Exploration Results, estimates of Mineral Resources or results of Scoping Studies, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcements continue to apply and have not materially changed. The Company confirms that the form and context in which any Competent Person's findings are presented have not been materially modified from the original market announcement.

SCOPING STUDY

The Scoping Study referred to in this report is based on low-level technical and economic assessments, and is insufficient to support estimation of Ore Reserves or to provide assurance of an economic development case at this stage, or to provide certainty that the conclusions of the Scoping Study will be realised.

The Company believes it has a reasonable basis for making the forward looking statements in this report, including with respect to any production targets, based on the information contained in the announcement "SCOPING STUDY HIGHLIGHTS THUNDERBIRD'S EXCEPTIONAL FINANCIAL RETURNS", dated 14 April 2014, and with respect to the Mineral Resource for Thunderbird as at 19 March 2014, independently compiled by QG Pty Ltd, together with independent metallurgical, processing design, engineering, mining and marketing studies, product quality assessment, external commodity price and exchange rate forecasts and global operating cost data.

FORWARD LOOKING STATEMENTS

Some statements in this report regarding estimates or future events are forward-looking statements. They involve risk and uncertainties that could cause actual results to differ from estimated results. Forward-looking statements include, but are not limited to, statements concerning the Company's exploration programme, outlook, target sizes and mineralised material estimates. They include statements preceded by words such as "anticipated", "expected", "target", "scheduled", "intends", "potential", "prospective" and similar expressions.

6

Table 1: Thunderbird infill aircore drill results, 9 February, 2015

Intervals greater than 10m @ +15%HM are shown in bold

	Depth	Depth	Interval	НМ	Slimes	Osize			Drill	Hole Collar Ir	formation
Hole ID	From (m)	To (m)	Width (m)*	wt%	wt%	wt%	Easting	Northing	RL	Depth (m)	Comment
THAC514	0.0	31.5	31.5	8.73	21.2	8.5	496530.3	8073244.2	110.5	42.0	
including	0.0	21.0	21.0	11.4	21.0	8.7					
THAC515	0.0	25.5	25.5	11.6	16.6	14.2	496453.0	8073149.7	109.9	36.0	
including	1.5	13.5	12.0	18.5	14.7	14.4					
THAC516	1.5	39.0	37.5	9.34	16.7	16.7	496051.7	8072670.7	107.8	48.0	
including	10.5	24.0	13.5	16.3	14.9	15.0					
THAC517	3.0	49.5	46.5	9.54	17.9	7.4	495972.1	8072586.0	107.4	54.0	
including	4.5	37.5	33.0	11.9	17.5	7.8					
THAC518	6.0	49.5	43.5	11.7	17.4	11.5	495888.5	8072478.0	106.6	60.0	
including	7.5	40.5	33.0	14.1	17.9	13.1					
THAC519	9.0	52.5	43.5	9.79	19.2	11.8	495596.5	8072898.7	108.8	60.0	
including	9.0	40.5	31.5	11.8	20.0	11.9					
THAC520	0.0	25.5	25.5	11.4	17.1	9.2	496105.4	8073114.8	109.2	42.0	
including	1.5	18.0	16.5	15.3	17.7	10.7					
THAC521	0.0	37.5	37.5	11.3	20.2	8.3	495947.4	8072936.8	108.4	45.0	
including	1.5	21.0	19.5	17.6	21.1	11.3					
THAC522	1.5	43.5	42.0	9.05	19.9	9.0	495856.7	8072842.0	108.4	51.0	
including	7.5	25.5	18.0	14.6	19.0	8.2					
THAC523	6.0	51.0	45.0	10.5	18.1	6.5	495773.8	8072726.1	108.1	54.0	
including	7.5	28.5	21.0	17.4	16.7	8.9					
THAC524^	10.5	46.5	36.0	11.7	17.7	7.5	495513.7	8072803.7	108.8	46.5	hole abandoned in mineralisation
including	12.0	33.0	21.0	16.2	15.9	10.6					
THAC525	0.0	31.5	31.5	10.4	17.8	12.2	495994.3	8073379.9	111.0	42.0	
including	0.0	16.5	16.5	15.9	16.3	18.3					
THAC526	1.5	36.0	34.5	11.3	17.6	9.2	496399.8	8072698.5	107.0	42.0	

	Depth	Depth	Interval	НМ	Slimes	Osize			Drill	Hole Collar In	formation
Hole ID	From (m)	To (m)	Width (m)*	wt%	wt%	wt%	Easting	Northing	RL	Depth (m)	Comment
including	1.5	16.5	15.0	19.5	15.7	9.9					
THAC527	1.5	43.5	42.0	10.1	17.2	7.5	496174.4	8072412.6	106.8	51.0	
including	1.5	25.5	24.0	13.8	16.1	11.1					
THAC528	0.0	33.0	33.0	13.5	17.1	7.0	496293.9	8072957.6	108.4	39.0	
including	0.0	18.0	18.0	21.3	16.4	9.1					
THAC529	0.0	30.0	30.0	12.9	18.1	10.0	496215.4	8072858.1	108.1	37.0	
including	1.5	18.0	16.5	18.9	16.1	13.0					
THAC530	0.0	37.5	37.5	10.8	16.5	12.0	496133.6	8072762.1	108.0	45.0	
including	1.5	30.0	28.5	13.3	15.9	12.6					
THAC531^	1.5	10.5	9.0	8.62	14.3	23.4	496051.8	8072666.7	107.8	10.5	hole abandoned in mineralisation
including	3.0	10.5	7.5	8.86	13.4	24.5					
THAC532	1.5	42.0	40.5	10.8	18.2	15.1	495672.4	8072991.3	108.7	52.5	
including	7.5	40.5	33.0	12.2	18.5	12.0					
THAC533	3.0	39.0	36.0	12.4	17.2	12.8	495753.9	8073089.1	109.0	48.0	
including	6.0	31.5	25.5	16.0	15.8	12.3					
THAC534	0.0	36.0	36.0	12.1	19.9	10.7	495835.3	8073186.1	109.7	48.0	
including	0.0	21.0	21.0	16.9	21.0	16.4					
including	27.0	31.5	4.5	8.88	28.0	5.6					
THAC535	0.0	36.0	36.0	12.1	17.6	9.4	495911.1	8073282.7	110.2	42.0	
including	0.0	27.0	27.0	15.2	16.5	11.1					
THAC536	0.0	31.5	31.5	10.0	17.3	14.1	496078.1	8073472.6	111.9	42.0	
including	1.5	22.5	21.0	13.3	16.3	15.3					
THAC537	0.0	31.5	31.5	8.85	17.3	10.9	496158.1	8073565.4	112.5	36.0	
including	0.0	15.0	15.0	14.8	16.3	16.8					
THAC538	0.0	28.5	28.5	7.23	22.5	6.2	496238.1	8073660.1	113.7	36.0	
including	4.5	13.5	9.0	13.2	22.1	2.3					
THAC539	0.0	27.0	27.0	11.0	19.6	12.7	496320.4	8073757.7	114.5	36.0	
including	0.0	12.0	12.0	19.2	14.7	19.1					

	Depth	Depth	Interval	НМ	Slimes	Osize			Drill	Hole Collar Ir	formation
Hole ID	From (m)	To (m)	Width (m)*	wt%	wt%	wt%	Easting	Northing	RL	Depth (m)	Comment
THAC540	0.0	30.0	30.0	13.6	18.9	10.2	496042.3	8073822.0	115.2	42.0	
including	0.0	22.5	22.5	16.2	17.3	10.0					
THAC541	1.5	30.0	28.5	13.4	15.5	8.0	495877.2	8073625.1	114.9	42.0	
including	3.0	28.5	25.5	14.1	14.7	7.9					
THAC542	1.5	39.0	37.5	10.7	17.6	10.4	495718.7	8073451.8	114.3	48.0	
including	4.5	33.0	28.5	13.1	16.9	10.0					
THAC543	1.5	42.0	40.5	9.94	18.9	11.9	495641.0	8073351.5	112.9	54.0	
including	4.5	34.5	30.0	12.3	18.5	11.3					
THAC544	0.0	43.5	43.5	11.1	18.2	11.0	495560.2	8073254.6	112.1	60.0	
including	7.5	28.5	21.0	18.8	18.1	9.5					
THAC545	12.0	49.5	37.5	12.1	18.6	7.8	495397.2	8073062.0	111.2	66.0	
including	15.0	45.0	30.0	14.3	18.7	9.3					
THAC546^	12.0	40.0	28.0	11.3	17.7	9.0	495133.0	8073125.6	112.3	40.0	hole abandoned in mineralisation
including	21.0	40.0	19.0	15.0	18.0	10.0					
THAC547	0.0	37.5	37.5	8.0	18.7	12.0	496264.0	8073324.2	111.2	42.0	
including	0.0	15.0	15.0	15.2	17.2	25.1					
THAC548	0.0	22.5	22.5	13.0	18.6	10.1	496419.8	8073503.1	112.7	42.0	
including	0.0	12.0	12.0	18.9	17.5	15.9					
THAC549	0.0	28.5	28.5	9.61	16.6	13.7	496617.7	8073347.9	111.1	36.0	
including	0.0	12.0	12.0	16.3	12.8	26.4					
THAC550	0.0	28.5	28.5	10.5	17.9	8.7	496695.8	8073435.2	111.5	36.0	
including	0.0	16.5	16.5	15.0	16.1	11.7					
THAC551	0.0	33.0	33.0	8.65	17.1	10.3	496799.0	8073358.8	110.7	36.0	
including	0.0	10.5	10.5	16.9	15.5	17.8					
including	18.0	25.5	7.5	7.69	22.2	11.6					
THAC552	0.0	34.5	34.5	6.91	16.7	10.3	497085.4	8073126.4	109.3	36.0	
Including	0.0	10.5	10.5	13.5	15.3	19.3					
including	16.5	21.0	4.5	8.29	22.4	21.4					

	Depth	Depth	Interval	нм	Slimes	Osize			Drill	Hole Collar In	formation
Hole ID	From (m)	To (m)	Width (m)*	wt%	wt%	wt%	Easting	Northing	RL	Depth (m)	Comment
THAC553	0.0	27.0	27.0	7.37	19.3	11.2	497003.5	8073029.3	108.4	36.0	
including	0.0	9.0	9.0	14.6	18.3	20.1					
THAC554	0.0	27.0	27.0	7.8	18.2	10.6	496924.2	8072934.8	107.7	36.0	
including	0.0	9.0	9.0	13.6	17.7	23.4					
THAC555	0.0	28.5	28.5	8.1	18.7	9.0	496843.3	8072830.7	107.0	36.0	
including	1.5	10.5	9.0	16.0	19.6	17.5					
THAC556	3.0	31.5	28.5	8.0	17.9	11.1	496681.0	8072644.6	106.4	36.0	
including	7.5	15.0	7.5	18.0	14.5	14.9					
THAC557	3.0	31.5	28.5	9.9	18.0	14.4	496603.7	8072547.9	106.2	36.0	
including	3.0	22.5	19.5	12.5	15.1	16.2					
THAC558	1.5	30.0	28.5	10.0	17.8	10.0	496530.4	8072450.8	106.1	42.0	
including	3.0	18.0	15.0	14.7	16.7	12.5					
THAC559	3.0	40.5	37.5	10.4	15.8	14.0	496360.6	8072257.8	107.2	54.0	
including	6.0	28.5	22.5	14.2	14.4	13.0					
THAC560	1.5	37.5	36.0	12.7	16.4	7.0	496281.5	8072161.8	106.4	54.0	
including	1.5	27.0	25.5	16.5	14.9	8.8					
THAC561	0.0	42.0	42.0	6.65	17.2	9.5	496586.5	8073694.6	113.5	96.0	Location +/- 15m accuracy
including	0.0	10.5	10.5	17.3	13.6	19.1					
and	82.5	88.5	6.0	6.02	28.6	5.7	496586.5	8073694.6	113.5	96.0	
THAC562	19.5	58.5	39.0	9.84	18.7	4.3	495206.8	8073212.8	112.7	60.0	
including	19.5	39.0	19.5	15.4	18.1	5.7					
THAC563	4.5	49.5	45.0	8.30	16.6	7.2	495292.5	8073322.8	113.6	54.0	
including	18.0	49.5	31.5	10.3	17.1	4.2					
THAC564	6.0	60.0	54.0	8.57	18.1	8.0	495450.9	8073505.5	115.0	60.0	
THAC564	10.5	42.0	31.5	12.6	17.5	10.8					

*All intervals calculated using 3% HM lower cut, 4.5m minimum width, maximum 4.5m internal waste; "*including*" intervals >7.5% HM, 4.5m minimum width, maximum 4.5m internal waste. HM, Slimes and Oversize ("Osize") determined by Heavy Liquid Separation (HLS) using TBE (sg. 2.96g/cc); screen sizes: slimes 38µm and oversize ("Osize") +1mm. Hole locations surveyed by licenced surveyors using a RTK GPS system with expected accuracy of +/- 0.02m horizontal and +/- 0.03m vertical. RL determined by projection to a DTM model created from regional (Landgate) spot heights. Easting and Northing coordinate system is MGA Zone 51 (GDA94), RL is AHD. All holes were drilled vertically. [^]Hole ended in mineralisation. # Interval same at 3% and 7.5% HM cutoff.

Appendix 1: JORC (2012) Table 1 Report (9 February, 2015 drilling results)

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 HQ diameter aircore drilling used to collect 2-3kg samples at 1.5m intervals down-hole. Mineral Sands Industry-standard drilling technique.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Aircore system HQ diameter holes. Blade drill bit used for majority of drilling, where hard rock layers intersected and unable to drill with blade bit, reverse circulation (RC) hammer used to penetrate layer, then return to blade. Aircore system used as an industry standard for HMS deposits.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Sample quality (including wet vs. dry and qualitative recovery) is logged at the drill site. Orientation process undertaken at the beginning of program to set up sampling system to collect 2-3kg sub-sample from 1.5m intervals. Remainder of sample (spoil) retained as 3m-composites for future analysis if required. Sample weight recorded at laboratory Drill system is optimised for HMS. Duplicate samples are collected at the drill site (see below) to enable analysis of data precision
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	 Every drill sample is washed and panned, then geologically logged on-site in 1.5m intervals, recording primary, secondary and oversize lithology, qualitative hardness, grainsize, rounding, sorting, and washability, visual estimates of HM%, SL% and OS%, and depth to water table. The entire length of the drill hole is logged;

Criteria	JORC Code explanation	Commentary
	 The total length and percentage of the relevant intersections logged. 	 minimum (nominal) interval length is 1.5m. Logging is suitable such that interpretations of grade and deposit geology can be used, for example, to establish context of exploration results and support Mineral Resource estimation.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether iffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Drill Site 2-3kg sample collected at 1.5m intervals in numbered bags at the drill site via rotary splitter at cyclone discharge point. Duplicate samples (field duplicates) collected at drill site 1 in every 40 samples. Reference standard and blank material samples inserted 1 each in every 40 samples. Sample submitted to external laboratory for heavy liquid separation (HLS) determination of weight per cent heavy mineral (HM), Slimes (SL) and Oversize (OS). Laboratory 2-3kg drill sample sub-split via rotary splitter to approx. 200g for analysis. HM, SL and OS calculated as percentage of total samples are conducted 1 in every 20 samples, and laboratory reference standard inserted 1 in every 40 samples. All Spacing of duplicate, standard, blank and lab repeat samples are designed to identify sample misplacement or misallocation during sample collection and laboratory analysis. Sample representivity and data precision has been determined as acceptable through analysis of results from field duplicate samples and laboratory repeats. Visual estimates of HM, Slimes and OS logged at the drill site are compared against laboratory results to identify any major errors. Analysis of duplicates show the data has acceptable precision, indicating sampling techniques are appropriate for the deposit style. Techniques are considered appropriate for use in public reporting of exploration results and Mineral Resource estimation.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Assay and laboratory procedures are industry standard for HMS, although laboratories' methods and heavy liquid composition vary slightly. TBE (2.96g/ml) is used for these results. Method produces a total grade as weight per cent of the initial sample. Method does not determine the relative amounts of valuable (saleable or marketable) and non-valuable heavy mineral species. Mineralogical determination studies are planned. QAQC sample frequency is described above. The HM reference sample used is a field-homogenised bulk sample with expected values and ranges determined internally from assay results. Blank material used is commercially available builder's sand. Reference standards and blanks are examined for performance over time and within laboratory batches. Batches or subbatches are re-analysed if unacceptable QAQC data are returned. Analysis of reference standards, blanks and laboratory repeats show the data to be of acceptable accuracy and precision for use in public reporting of exploration results and Mineral Resource estimation.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intervals are reviewed by senior Sheffield personnel prior to release. Twinned holes have been assessed from previous drilling campaigns with no issues identified. Data is logged electronically using "validation at point of entry" systems prior to storage in the Company's drill hole database, which is managed by Company personnel and an external consultancy. Documentation related to data custody and validation are maintained on the Company's' server. No assay data have been adjusted.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collar locations were surveyed by licenced surveyors using a RTK GPS system with expected accuracy of +/- 0.02m horizontal and +/- 0.03m vertical, except where indicated. Coordinates are referenced to the Map Grid of Australia (MGA) zone 51 on the Geographic Datum of Australia (GDA94). Vertical datum geoid model is AUSGEOID98 (Australia). The reported RL has been determined by projection of hole collars to a regional (Landgate) DTM. Mineral Resource estimation will use this projected RL value, hence this value is reported with the exploration results. The average difference between surveyed and modelled RL is 0.5m which is considered negligible given the nature of

Criteria	JORC Code explanation	Commentary
		the mineralisation, and the size of the Thunderbird deposit.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 See figures in body of announcement for drill hole spacing. Samples reported in the announcement have not been composited. Significant intervals are reported as indicated in the relevant table(s) in the body of the announcement. Results of infill holes are included in this announcement.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Mineralisation is flat-lying to less than 4deg. dip, vertical drill holes therefore approximate true thickness and perpendicular intersection of mineralisation. Note sections in the body of the announcement are displayed with vertical exaggeration.
Sample security	 The measures taken to ensure sample security. 	 Sample security is not considered a significant risk given the location of the deposit and bulk nature of mineralisation. Nevertheless, the use of recognised transport providers, and sample dispatch procedures directly from the field to the laboratory are considered sufficient to ensure appropriate sample security.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 No formal external audits or review of sample techniques or data have been conducted. Audits are not considered necessary at this stage of the Project's development. Industry-standard methods are being employed.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	Statement	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The exploration results reported are entirely within Exploration Licence E04/2083, located on the Dampier Peninsula about 60km west of Derby, and 25km north of the sealed Great Northern Hwy joining Derby and Broome E04/2083 was granted on 05/09/2011 and is due to expire on 04/09/2016; it is held 100% by Sheffield Resources Ltd. On 16/07/2014 Sheffield lodged a Mining Lease Application (M04/459) over the Thunderbird deposit. There are no known or experienced impediments to obtaining a licence to operate in the area. Sheffield has been operating successfully in the region for more than 3 years to date.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The Dampier project area was explored by Rio Tinto ("Rio") between 2003 and 2009. Rio completed four broadly spaced

Criteria	Statement	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	 aircore drill traverses, identifying heavy mineral concentrations at Thunderbird averaging 8.07% HM with 8.0% zircon. Rio surrendered the tenements following the 2008 global financial crisis. Further details are included in Sheffield's ASX release entitled 'New Licence Granted Over High Grade Zircon Project' dated 7 September, 2011 (available from the company's website: www.sheffieldresources.com.au). The Dampier Project is within the Canning Basin in the Kimberley region of Western
		 Australia. The Canning Basin is an intracratonic basin which contains Ordovician to Cretaceous deposits covered by Cenozoic sediments. Thunderbird is a heavy mineral sand (HMS) deposit hosted by deeply weathered Cretaceous-aged formations. Valuable heavy minerals (VHM) contained within the deposit include ilmenite, zircon, leucoxene and rutile. The mineralisation is in a thick, broad anticlinal sheet-like body striking northwest. In the core of the anticline it is at surface, rolling at about 4deg. dip about the axis, extending under cover to the southwest. The areal extent, width, grade, geological continuity and grainsize of the Thunderbird mineralisation are interpreted to indicate an off-shore, sub-wave base depositional environment. Five stratigraphic units have been defined by Sheffield geologists within the deposit area using a combination of surface mapping and drill hole lithological logs. These are referred to locally as the Fraser Beds, Reeves, Melligo, Thunderbird and Jowlaenga Formations. Of these the Thunderbird Formation is the most important, with the Thunderbird Formation representing the main mineralised unit. Also important, the Fraser Beds act as a distinct marker unit toward the base of the Thunderbird Formation, enabling confidence in interpretation of the extent, strike and dip of the stratigraphy. The Thunderbird Formation is described as medium to dark brown/orange, fine to very fine well sorted loose sands. It is up to 90m thick (average 46m) and is very rich in heavy minerals (up to 40% HM). It is modelled over the Resource area as at least 8.5km along strike and more than 3km to 6.5km wide. Within the Formation are layers of iron cemented sandstone. These layers are interpreted to have been formed by post-depositional chemical processes of ferruginisation from ancient water table movements with iron oxides leached from the sand (eg. ilmenite). They occur

Criteria	Statement	Commentary
Drill hole Information	A summary of all information material to	 includes 20 sonic core holes drilled as part of geotechnical investigations. Whilst the results of this program are not available to be incorporated into this resource estimate, visual observations have confirmed observations of hard rock bands within the deposit to be narrow (typically 5-10cm thick and rarely >30cm thick) and not extensive (not extending as a single layer further than <60m). Also within the Formation is a continuous, very-high grade HM (>7.5%) zone named the GT Zone. This Zone is up to 43m thick (average 16m) over an area at least 7.5km x 4km, strikes approximately northsouth, follows the dip of the Thunderbird Formation and is open along strike. The high-grade of HM in the GT zone is interpreted to result from deposition in off-shore higher wave energy shoals. Exploration results relating to the drillholes
Information	 the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 from previous drilling campaigns have been publicly released in numerous previous Company announcements referring to the Dampier Project and Thunderbird deposit. Information relating to the number of drillholes, assayed samples, location accuracy, orientation etc. is included in this table, and in the body of the announcement. Diagrams in the body of the announcement show the location of and distribution of drillholes in relation to the current Mineral Resource and Scoping Study results (eg. Optimised pit shell). Where drill holes have been unable to reach planned depths this has been indicated in the comments column of Table 1 in the body of announcement.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	• Criteria for calculating significant intervals are included at the end of Table 1 in the body of the announcement. Minimum widths, maximum internal waste intervals and cut-off grades have been selected to most-appropriately represent the mineralised body, taking into account overall deposit grade and geological continuity. No "high" or "top-cuts" are applied. High-grade components of significant intervals are detailed in Table 1 preceded by the term "including".
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down 	 Mineralisation is flat-lying to less than 4deg. dip, vertical drill holes therefore approximate true thickness. Refer to diagrams in the body of the announcement for visual representation of drillhole orientation vs. deposit orientation, note the vertical exaggeration used.

Criteria	Statement	Commentary
	hole length, true width not known').	
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 See body of announcement for plan and cross section views and tabulation of results (Table 1).
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All current drill hole results are reported in this announcement. Where results do not meet the criteria of significant interval these are reported in Table 1 as "no significant interval". Where plan and cross section diagrams refer to results from previous announcements; those results have been reported in full in previous announcements. All information considered material to the reader's understanding of the exploration results have been reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Sheffield has previously reported deposit information for Thunderbird including a Mineral Resource estimate (December 2014 Resource – Appendix 2 – see ASX release dated 12 December 2014) and Scoping Study results (see ASX release dated 14 April, 2014), and recent drilling results (see ASX release dated 10 November, 2014) Where relevant this information has been included in the body of this announcement.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Sheffield announced positive results from its Scoping Study for Thunderbird on 14 April, 2014. Following from this, a Pre- Feasibility Study in progress and is scheduled for completion in Q1 2015. This will incorporate results from the December 2014 Mineral Resource.

		Mineral Re	esources	Valuable HM Grade (In-situ) ¹			1
Resource	Cut-off	Material	НM	Zircon	HiTi	Leucoxene	Ilmenite
Category	HM%	Million	%	%	Leucoxene	%	%
		Tonnes			%		
Measured	3.0	75	7.9	0.71	0.21	0.19	2.4
Indicated	3.0	2,550	7.0	0.60	0.19	0.22	2.0
Inferred	3.0	580	5.6	0.47	0.16	0.20	1.5
Total	3.0	3,205	6.8	0.58	0.19	0.21	1.9
Measured	7.5	35	12.7	1.1	0.32	0.27	3.7
Indicated	7.5	920	11.9	0.93	0.29	0.26	3.3
Inferred	7.5	125	10.8	0.83	0.25	0.24	3.0
Total	7.5	1,080	11.8	0.92	0.28	0.25	3.3

APPENDIX 2: THUNDERBIRD MINERAL RESOURCE 12 DECEMBER 2014

Table 1: Thunderbird I	Deposit Mineral Resource
------------------------	--------------------------

Table 2: Thunderbird Deposit contained Valuable HM (VHM) Resource Inventory

Resource Category	Cut off (HM%)	Zircon (kt)	HiTi Leucoxene (kt)	Leucoxene (k†)	llmenite (kt)	Total VHM (kt)
Measured	3.0	500	200	200	1,800	2,600
Indicated	3.0	15,900	5,200	6,500	50,400	78,100
Inferred	3.0	2,800	1,000	1,300	9,000	14,100
Total	3.0	19,300	6,300	8,000	61,100	94,800
Measured	7.5	400	100	100	1,300	1,800
Indicated	7.5	8,600	2,600	2,400	30,700	44,300
Inferred	7.5	1,100	300	300	3,800	5,400
Total	7.5	10,000	3,100	2,800	35,700	51,500

¹ The In-situ grade is determined by multiplying the percentage of HM by the percentage of each valuable heavy mineral within the heavy mineral assemblage. All tonnages and grades have been rounded to reflect the relative uncertainty of the estimate, thus sum of columns may not equal. Refer to Sheffield's ASX announcement dated 12 December, 2014 for further details.

ABOUT SHEFFIELD RESOURCES

Sheffield Resources Limited (**Sheffield**) is a rapidly emerging heavy mineral sands (HMS) company.

ASX Code:	SFX	Market Cap @ 78cps	\$104.8m
Issued shares:	134.4m	Cash: \$4.7m (at 31 Dece	ember 2014)

Sheffield's projects are all situated within the state of Western Australia and are 100% owned by the Company.

HEAVY MINERAL SANDS

The Dampier project, located near Derby in WA's northwest, contains the large, high grade zircon-rich Thunderbird HMS deposit. Sheffield is currently undertaking a pre-feasibility study on Thunderbird.

The Eneabba project comprises multiple HMS deposits and is located near Eneabba approximately 140km south of the port of Geraldton in WA's Mid-West region.

Sheffield is also evaluating the large McCalls chloride ilmenite project, located 110km to the north of Perth.

NICKEL-COPPER

Sheffield has over 2,000km² of tenure in the Fraser Range region, including the Red Bull project which is within 20km of Sirius Resources NL's (ASX:SIR) Nova Ni-Cu deposit.

IRON

Sheffield's Panorama and Mt Vettel DSO iron projects are located in the North Pilbara region, near existing iron ore mines and within potential trucking distance of Port Hedland.

POTASH

Oxley, located in WA's Mid-West region, is a large scale, unconventional hard rock potash project with potential to generate products for the fertiliser market.