

ASX and Media Release

19 March 2014

SHEFFIELD DOUBLES TOTAL MINERAL RESOURCES AT WORLD CLASS THUNDERBIRD HMS DEPOSIT

Substantial upgrade to size, grade and resource classifications lay exceptional foundation for forthcoming scoping studies

KEY POINTS

- Total Mineral Resource for Thunderbird of 2.62 billion tonnes (Bt) @ 6.5% heavy mineral (HM) (Measured, Indicated and Inferred)
- Includes a coherent higher grade component of 740Mt @ 12.1% HM (Measured, Indicated and Inferred) with very high in-situ zircon (0.92%) and ilmenite (3.4%) grades
- 148% increase in contained zircon to 14.3Mt, 97% increase in contained ilmenite to 47.9Mt
- Both in terms of grade and size, Thunderbird is in the top tier of HMS deposits globally
- Substantial upgrade to higher resource classifications with 72% of Total Resource in the Measured and Indicated categories
- Delivering the next key milestone, Thunderbird Scoping Study, in coming weeks
- Mineralisation remains open in several directions further exploration drilling to target extensions during 2014

Mineral sands company Sheffield Resources ("Sheffield") (ASX:SFX) today announced an updated mineral resource of **2.62Bt @ 6.5% HM** (Measured, Indicated and Inferred) for **170Mt of contained HM** for the Thunderbird deposit at its Dampier heavy mineral sand (HMS) Project in the Canning Basin region of Western Australia (Figure 2, Tables 1-3).

		Mineral Re	esources		Valuable HM (Grade (In-situ)	2
Resource	Cut-off	Material	НM	Zircon	HiTi	Leucoxene	Ilmenite
Category	HM%	Million	%	%	Leucoxene	%	%
		Tonnes ³			%		
Measured	3.0	75	7.5	0.68	0.20	0.18	2.2
Indicated	3.0	1,805	6.8	0.56	0.19	0.20	1.9
Inferred	3.0	740	5.7	0.49	0.17	0.20	1.6
Total	3.0	2,620	6.5	0.55	0.18	0.20	1.8
Measured	7.5	30	12.2	1.1	0.32	0.26	3.6
Indicated	7.5	545	12.5	0.94	0.29	0.25	3.5
Inferred	7.5	165	10.9	0.84	0.27	0.24	3.2
Total	7.5	740	12.1	0.92	0.29	0.25	3.4

Table 1: Thunderbird Deposit Mineral Resource¹ Summary

¹ Data is sourced from Appendix 2, and also presented in Tables 2 & 3 (below). Refer to Appendix 1 for further information.

² The In-situ grade is determined by multiplying the percentage of HM by the percentage of each valuable heavy mineral within the heavy mineral assemblage.

³ Tonnes and grades have been rounded to reflect the relative uncertainty of the estimate.

This compares to the previous December 2012 maiden mineral resource of 1.37Bt @ 6.1% HM (Indicated & Inferred) at 2% HM cut-off (see ASX release dated 18 December 2012).

The resource includes a coherent high grade zone (at 7.5% HM cut-off) of **740Mt @ 12.1% HM** (Measured, Indicated and Inferred) containing **6.8Mt of zircon**, **2.1Mt of high-titanium leucoxene**, **1.9Mt of leucoxene and 25Mt of ilmenite**. Sheffield's Thunderbird Scoping Study, due for completion in the next few weeks, will focus on scheduling initial production from this high grade zone during early production years.

The high in-situ valuable heavy mineral (VHM) grades for this zone of **0.92% zircon**, **0.29% hightitanium leucoxene**, **0.25% leucoxene and 3.4% ilmenite** place Thunderbird within the top tier of HMS deposits globally (Figures 4 & 5).

Managing Director, Bruce McQuitty said the resource update underlined the world class status of the Thunderbird deposit.

"The Thunderbird deposit is one of the largest accumulations of zircon in the world. The contained zircon of the Total Resource stands at 14.3 million tonnes, more than twice that of the previous 2012 resource estimate. The deposit also contains a globally significant quantity of ilmenite."

"The key to the deposit is the extensive high grade zone which features exceptionally high insitu grades of 0.92% zircon and 3.4% ilmenite. Zircon and ilmenite are expected to be the most important products by value and volume, respectively."

"Importantly, leading industry consultants TZMI have confirmed that the Thunderbird products will achieve wide acceptance in the broadest market sectors."

"This resource update is an outstanding result for our shareholders and a great achievement by our exploration team who have built a resource inventory of global scale during the last three years."

"The mineralisation at Thunderbird remains open in all directions. Sheffield's 2014 drilling campaign will target extensions to the deposit."

"We look forward to delivering our next key milestone, the Thunderbird Scoping Study, in coming weeks."

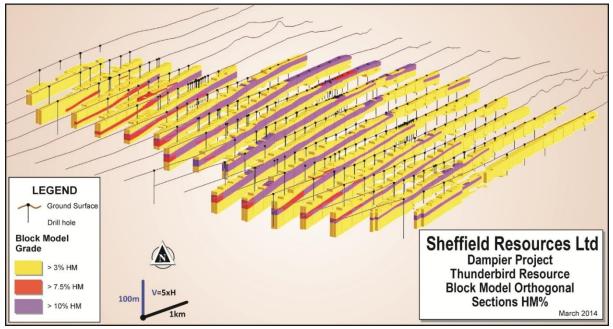


Figure 1: Thunderbird Resource block model HM grade, orthogonal view looking to the north

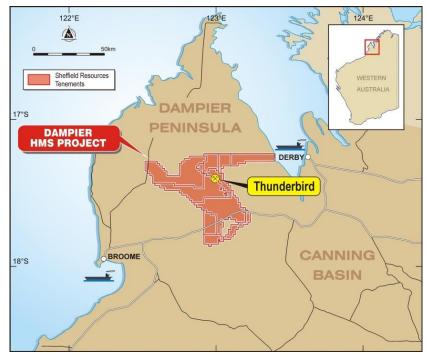


Figure 2: Location of the Thunderbird Deposit & Sheffield's tenement holding in the Canning Basin

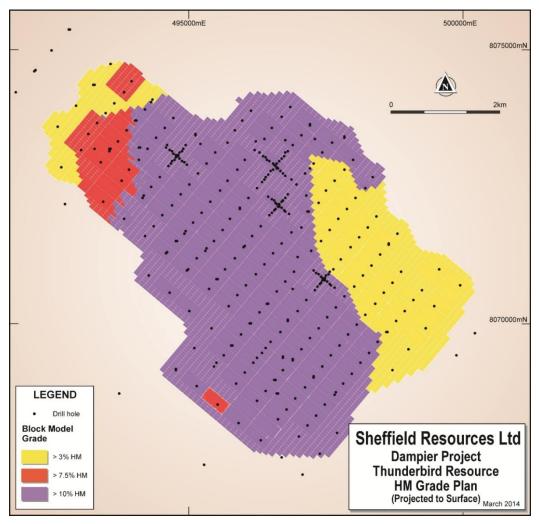


Figure 3: Thunderbird Resource HM% block extents projected to surface, highest grade on top

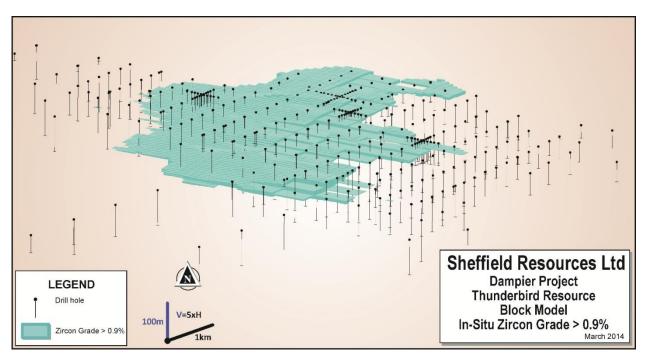


Figure 4: Thunderbird Resource block model >0.9% in-situ zircon, orthogonal view looking north

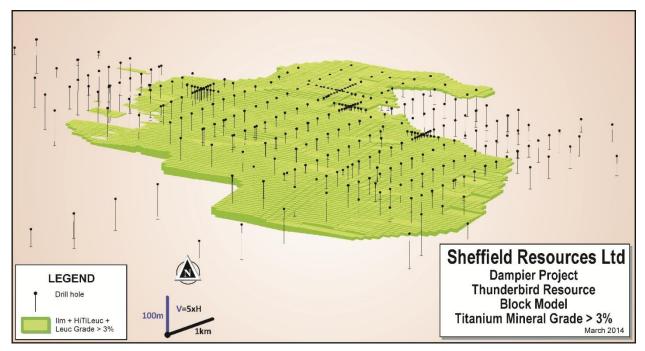


Figure 5: Thunderbird Resource block model >3% in-situ titanium minerals, orthogonal view looking north

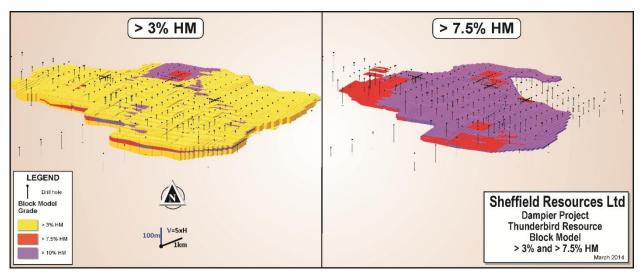


Figure 6: Thunderbird Resource block model HM grade, orthogonal view looking north

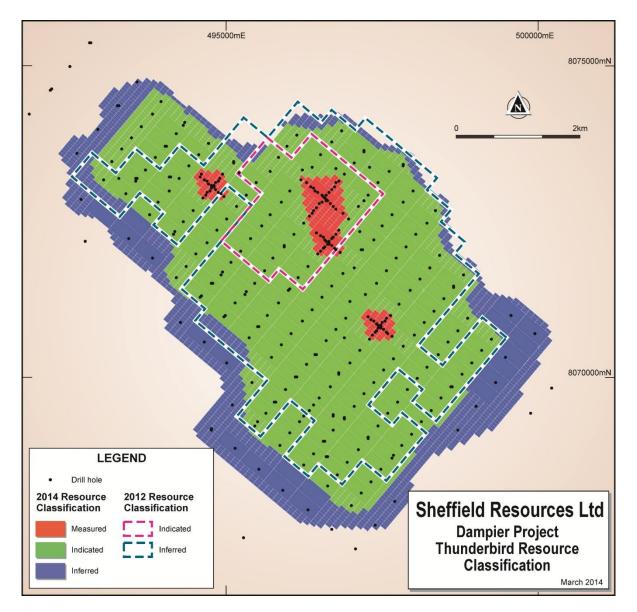


Figure 7: Thunderbird Resource block model resource category plan, and comparison with 2012 resource category boundaries

About the Thunderbird Deposit

The Thunderbird deposit occurs within Sheffield's Dampier Project, located on the Dampier Peninsula about 60km west of Derby, and 25km north of the sealed Great Northern Hwy joining Derby and Broome (Figure 2).

Thunderbird is the first major mineral sands deposit to be discovered in the Canning Basin, which is rapidly emerging as an important new mineral sands province. Sheffield recently expanded its Dampier project tenure to 2,521km² by applying for a further three exploration licences.

Mineral Resource

This updated mineral resource is based on data from Sheffield's 2012 and 2013 aircore drilling programmes which together comprise 441 holes for 25,953m.

At 3% HM cut-off the Resource covers an area which is 8km long and between 2.5km and 5.5km wide and remains open in all directions. The mineralisation occurs as a thick, broad anticlinal sheetlike body striking northwest, extending from surface to a maximum modelled depth of 153m. The average depth to the top of mineralisation is 21m and the average mineralised thickness is 47m (Figure 1). The deposit is flat-lying along the north-eastern flank, but the dip steepens to 4 degrees along the south-western flank. Around 32% of the total resource area occurs within 6m of surface.

At 7.5% HM cut-off the Resource covers an area about 7km long by 2.5km to 4.5km wide, and remains open to the north and south. This higher grade mineralisation is enclosed within the 3% cut-off Resource envelope, but has a north-south long axis orientation which is oblique to the regional strike. The high grade mineralisation extends from 1m below surface to a maximum modelled depth of 112m. The average depth to the top of the high-grade mineralisation is 36m and the average mineralised thickness is 15m (see stacked sections Figure 1). Approximately one quarter of the >7.5% resource area is within 15m of surface.

The updated Resource includes the results of 459 samples which were analysed to determine the HM assemblage. The analytical method used a combination of screening, magnetic separation, Qemscan and XRF. The method was developed following mineralogical trials guided by earlier bulk sample metallurgical testwork.

At a 3% HM cut-off, the HM assemblage of the Resource is 8.4% zircon, 2.8% high-titanium leucoxene, 3.0% leucoxene and 28% ilmenite for a total VHM component of 42%. Process testwork has shown that the valuable heavy minerals can be recovered using standard mineral sands processing techniques.

Further information relating to the Mineral Resource is included in Appendix 1 and 2 of this announcement.

<u>Geology</u>

The Thunderbird deposit is hosted by deeply weathered Cretaceous-aged formations. Its areal extent, thickness, grainsize, excellent grade and geological continuity are thought to indicate an off-shore, sub-wave base depositional environment.

Sheffield geologists have defined five stratigraphic units within the deposit area using a combination of surface mapping and drillhole lithological logs. These are referred to locally as the Fraser Beds, Reeves, Melligo, Thunderbird and Jowlaenga Formations. Of these, the Thunderbird Formation is the main mineralised unit.

The Thunderbird Formation comprises medium to dark brown/orange, fine to very fine well-sorted loose sands. It is over 90m thick and is very rich in heavy minerals (up to 40% HM). Within the Formation are occasional layers of 20cm to 1m thick iron-cemented sandstone. These layers are interpreted to have formed by post-depositional processes involving ancient water table movements leaching iron oxides from iron-bearing minerals such as ilmenite. They are a minor component of the overall mineralised sequence and have a patchy distribution, rarely extending between drill holes (at 60m to 250m spacing).

Within the Thunderbird Formation is a continuous zone of very high grade HM (>7.5%) named the "GT Zone". The GT Zone is up to 29m thick (average 15m) over an area at least 7km x 3.5km, strikes approximately north-south, follows the dip of the Thunderbird Formation and is open along strike. The GT Zone is interpreted to have formed in off-shore higher wave energy shoals.

<u>Metallurgy</u>

Metallurgical testwork confirms Thunderbird will generate high quality marketable products using conventional processing technology (see ASX release of 25 March 2013). Sizing analyses data indicate heavy mineral to be fine to medium grained with a median diameter (d50) of 75-90 microns. Modern processing techniques recover down to 38 microns.

The Thunderbird deposit has a moderate slimes content, averaging 17% slimes at the 3% HM cutoff and 16% slimes at the 7.5% HM cutoff. The slimes have favourable characteristics, including a low clay content, and exhibit high settling rates at low flocculant dosage rates of 20-30 grams per tonne.

Product quality

Product quality assessment by TZ Minerals International (TZMI) confirms Thunderbird zircon as premium grade and suitable for the ceramic sector. The primary ilmenite is suitable for sulphate TiO₂ pigment manufacture and sulphate or chloride slag. The low levels of alkalis and chromium in the primary ilmenite make it an attractive feedstock for blending with ilmenite with higher levels of these contaminants. Secondary ilmenite, rutile and high TiO₂ leucoxene products are suitable for the welding electrode sector (see ASX release of 1 August 2013). These products may be combined into a single HiTi product.

Further Work

The results of this Resource update will be used to finalise pit optimization and mine scheduling for the current scoping study. It is anticipated that work on Thunderbird will transition to a pre-feasibility study during Q2 2014.

ENDS

For further information please contact:

Bruce McQuitty Managing Director Tel: 08 6424 8440 <u>bmcquitty@sheffieldresources.com.au</u> Website: <u>www.sheffieldresources.com.au</u> Media: Annette Ellis/Warrick Hazeldine Cannings Purple Tel: 08 6314 6302 <u>aellis@canningspurple.com.au</u>

COMPLIANCE STATEMENTS

MINERAL RESOURCES

The information in this report that relates to Mineral Resources is based on information compiled under the guidance of Mr Mark Teakle, a Competent Person who is a Member of the Australasian Institute of Geoscientists (AIG) and the Australasian Institute of Mining and Metallurgy (AusIMM). Mr Teakle is a full-time employee of Sheffield Resources Ltd and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Teakle consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to the estimation of Mineral Resources is based on information compiled by Mr Trent Strickland, a Competent Person who is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM). Mr Strickland is a full-time employee of QG and has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Strickland consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

PREVIOUSLY REPORTED INFORMATION

This report includes information that relates to Exploration Results and Mineral Resources which were prepared and first disclosed under the JORC Code 2004. The information has not been updated since to comply with the JORC Code 2012 on the basis that the information has not materially changed since it was last reported. The information was extracted from the Company's previous ASX announcements as follows:

- 2012 Thunderbird Mineral Resource: "LARGE HIGH GRADE MAIDEN RESOURCE FOR THUNDERBIRD HMS DEPOSIT", 18 December 2012.
- Metallurgy: "WORLD CLASS STATUS OF THUNDERBIRD CONFIRMED BY METALLURGICAL TESTWORK", 25 March 2013.
- Product Quality: "THUNDERBIRD PRODUCTS CONFIRMED AS HIGHLY MARKETABLE", 1 August 2013.

These announcements are available on Sheffield Resources Ltd's web site <u>www.sheffieldresources.com.au</u>.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcements and, in the case of estimates of Mineral Resources, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The Company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement.

FORWARD LOOKING STATEMENTS

Some statements in this report regarding estimates or future events are forward-looking statements. They involve risk and uncertainties that could cause actual results to differ from estimated results. Forward-looking statements include, but are not limited to, statements concerning the Company's exploration programme, outlook, target sizes and mineralised material estimates. They include statements preceded by words such as "anticipated", "expected", "target", "scheduled", "intends", "potential", "prospective" and similar expressions.

ABOUT SHEFFIELD RESOURCES

Sheffield Resources Limited (Sheffield) is a rapidly emerging heavy mineral sands (HMS) company.

ASX Code – SFX	Market Cap @ 62cps - \$74.2m
Issued shares – 119.6m	Cash - \$3.4m (at 31 December 2013)

Sheffield's projects are all situated within the state of Western Australia and are 100% owned by the Company.

HEAVY MINERAL SANDS

The Dampier project, located near Derby in WA's northwest, contains the large, high grade zirconrich Thunderbird HMS deposit.

The Eneabba project comprises multiple HMS deposits and is located near Eneabba approximately 140km south of the port of Geraldton in WA's Mid-West region.

Sheffield is also evaluating the large McCalls chloride ilmenite project, located 110km to the north of Perth.

NICKEL-COPPER

Sheffield's Red Bull project is located in the highly prospective Fraser Complex within 20km of Sirius Resources NL's (ASX:SIR) Nova Ni-Cu discovery.

IRON

Sheffield holds four exploration licences prospective for iron in the North Pilbara region, all near existing iron ore mine sites or major development projects and within potential trucking distance of Port Hedland. The recently discovered Mt Vettel DSO deposit is the Company's current exploration focus in this region.

POTASH

The Oxley potash project is located in the northern part of the Proterozoic Moora Basin, approximately 38km northeast of Three Springs. Sheffield is exploring the Oxley Potash project for unconventional hard rock potash mineralisation suitable for open pit mining.

			Minera	l Resour	ces			N	1ineral A	ssembla	ge ²
Resource Category	Cut off (HM%)	Material (Mt)	Bulk Density	HM %	Slimes %	Osize %	In-situ HM (Mt)	Zircon %	HiTi Leuc %	Leuc %	llmenite %
Measured	3.0	75	2.1	7.5	19	11	6	9.1	2.7	2.4	30
Indicated	3.0	1,805	2.1	6.8	17	9	122	8.3	2.7	2.9	28
Inferred	3.0	740	2.0	5.7	15	9	42	8.5	2.9	3.5	29
Total	3.0	2,620	2.1	6.5	17	9	170	8.4	2.8	3.0	28
Measured	7.5	30	2.2	12.2	18	14	4	8.7	2.6	2.2	30
Indicated	7.5	545	2.1	12.5	16	11	68	7.5	2.3	2.0	28
Inferred	7.5	165	2.0	10.9	14	10	18	7.6	2.5	2.2	29
Total	7.5	740	2.1	12.1	16	11	89	7.6	2.4	2.1	28

Table 2: Thunderbird prospect Mineral Resource¹

Table 3: Thunderbird prospect contained Valuable HM (VHM) Resource Inventory¹

Resource Category	Cut off (HM%)	Zircon (kt)	HiTi Leucoxene (kt)	Leucoxene (kt)	llmenite (kt)	Total VHM (kt)
Measured	3.0	510	150	140	1,660	2,450
Indicated	3.0	10,170	3,350	3,550	34,110	51,170
Inferred	3.0	3,600	1,230	1,470	12,110	18,420
Total	3.0	14,280	4,730	5,150	47,880	72,040
Measured	7.5	330	100	80	1,130	1,640
Indicated	7.5	5,090	1,590	1,380	18,790	26,850
Inferred	7.5	1,360	440	400	5,160	7,360
Total	7.5	6,790	2,130	1,860	25,080	35,860

¹ All tonnages and grades have been rounded to reflect the relative uncertainty of the estimate, thus sum of columns may not equal.

² Estimates of Mineral Assemblage are presented as percentages of the Heavy Mineral (HM) component of the deposit, as determined by screening, magnetic separation, QEMSCAN and XRF. Magnetic fractions were analysed by QEMSCAN for mineral determination as follows: Ilmenite: 40-70% TiO₂ >90% Liberation; Leucoxene: 70-94% TiO₂ >90% Liberation; High Titanium Leucoxene (HiTi Leucoxene): >94% TiO₂ >90% Liberation; and Zircon: 66.7% ZrO₂+HfO₂ >90% Liberation. The non-magnetic fraction was submitted for XRF analysis and minerals determined as follows: Zircon: ZrO₂+HfO₂/0.667 and High Titanium Leucoxene (HiTi Leucoxene): TiO₂/0.94.

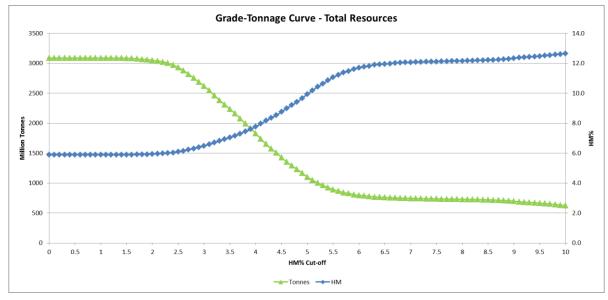


Figure 8: Thunderbird resource grade-tonnage curve.

Glossary

Heavy Mineral	("HM") Material (individual minerals or mineral aggregates) which does not pass through a screen (mesh) of nominated size (the "Slimes" screen, eg. 38µm) and does pass through a screen of nominated size (the "Oversize" screen, eg. 1mm) and has density greater than a nominated amount (typically 2.85 to 2.96g.ml).
HM%	Weight percentage of Heavy Mineral in a sample.
Oversize	("OS" or "Osize") Material that does not pass through a screen of nominated size, for Thunderbird this is universally 1mm.
OS%	Weight percentage of Oversize material in a sample.
Slimes	("SL") Material that passes through a screen of nominated size, for Thunderbird 38 μm and 45 μm screens were used.
SL%	Weight percentage of Slimes material in a sample.
Valuable Heavy Mineral	("VHM" or "Valuable HM") Component of Heavy Mineral which has the potential to become marketable products; eg. zircon, ilmenite, rutile, leucoxene, HiTi Leucoxene, etc.

Appendix 2: JORC (2012) Table 1 Report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 NQ and HQ diameter aircore drilling used to collect 2-3kg samples at 1.5m intervals downhole. Mineral sands industry-standard drilling technique. See below for sample and assay QAQC procedures and analysis.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what 	 Wallis Drilling aircore system; NQ size for 49% of drill database (12,643m); HQ diameter for 47% (12,173m). "Metzke" 75mm diameter aircore 4% of drill database (1,137m). Blade drill bit used for majority of drilling. Where hard rock layers were intersected and unable to drill with blade bit, a pencil (open-

Criteria	JORC Code explanation	Commentary
	method, etc).	 hole) or reverse circulation hammer was used to penetrate the layer, then changed back to blade. Wallis aircore system used as an industry standard for HMS deposits.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 An orientation process was undertaken at the beginning of the program to optimise the sampling system to collect a 2-3kg subsample from 1.5m intervals. The remainder of the drill sample (spoil) has been retained as 3m-composites for future analysis if required. Sample weight is recorded at the laboratory Duplicate samples are collected at the drill site (see below) to enable analysis of data precision. Sample condition (wet to dry and good to poor qualitative recovery) is logged at the drill site. Of the total database, 33% samples were collected as wet samples and 2.8% were classed as having poor recovery. There is a small negative bias in HM% and OS% and a small positive bias in SL% for dry compared with wet samples. There is a small negative bias in HM% and OS% and a positive bias in SL% for samples with good recovery compared to those with poor recovery. Recovery has a greater influence than wetness on HM%, OS% and SL% values. The very small number of wet-poor recovery samples in the database (2.8%), and the conservative bias in HM grade suggests no significant effect on the resource estimate due to sample condition. The sample quality is considered appropriate for the Mineral Resource estimation procedure and classification applied.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Every drill sample is washed and panned, then geologically logged on-site in 1.5m intervals, recording primary, secondary and oversize lithology, qualitative hardness, grainsize, rounding, sorting, and washability, visual estimates of HM%, SL% and OS%, and depth to water table. The entire length of the drillhole is logged; minimum (nominal) interval length is 1.5m. Logging is suitable such that interpretations of grade and deposit geology can be used to support the Mineral Resource estimation procedure and classification applied.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	 HM%, SL% OS% Determination Drill Site A 2-3kg sample is collected at 1.5m intervals in numbered bags at the drill site via rotary splitter at the cyclone discharge point. Duplicate samples (field duplicates) collected at drill site 1 in every 40 samples. Reference standard and blank material samples inserted 1 each in every 40 samples. Samples submitted to an external laboratory for heavy liquid separation (HLS)

Criteria	JORC Code explanation	Commentary
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 determination of weight per cent heavy mineral (HM%), Slimes (SL%) and Oversize (OS%). Laboratory The 2-3kg drill sample is sub-sampled via a rotary splitter to approx. 200g for analysis. The 200g sub-sample is soaked overnight in water. 2012 samples: (29% of sample database) then screened and weighed. 2013 samples: (67% of sample database) a 5 minute attrition in a plastic bucket with low solids density, then screened and weighed. HM%, SL% and OS% calculated as percentage of total sample weight (see below). Laboratory repeats are conducted 1 in every 20 samples (96% of database). Laboratory internal standard inserted 1 in every 40 samples (96% of database). Laboratory provides a sachet containing the Heavy Mineral Concentrate (HMC) for each sample – this is used in HM assemblage determination (see below). All Spacing of duplicate, standard, blank and lab repeat samples are designed to identify sample collection and laboratory analysis. Visual estimates of HM%, SL% and OS% logged at the drill site are compared against laboratory repeats show the data has acceptable precision, indicating the sub-sample and laboratory ensults to identify significant errors. Analysis of field duplicate samples and laboratory repeats the data has acceptable precision, indicating the sub-sampling and sample preparation techniques are appropriate for the deposit style and the Mineral Resource estimation procedure and classification applied.
		 HM Assemblage Determination Heavy Mineral Concentrate (HMC) from individual samples is combined according to HM grade and weight into (nominal) 50g – 100g composite samples for HM assemblage determination. Weighed HMC is split via a micro-riffle to ensure HM%, SL% and OS% of the final composite sample can be correctly calculated. HM assemblage determination was by a combination of screening, magnetic separation, QEMSCAN™ and XRF assay to determine the component mineralogy. This is considered an industry standard method, typically optimised according to the HM characteristics of individual deposits. For Thunderbird the method was designed and optimised using an iterative trial process and the results of 6t and 5t bulk sample process metallurgical testwork.

Criteria	JORC Code explanation	Commentary
Quality of	 The nature, quality and 	 5% of samples in the HM assemblage database were repeated from the original drill sample and 4% of samples were repeated from the composite HMC. Analysis of these repeats show the data has acceptable precision, indicating the sub- sampling and sample preparation techniques are appropriate for the deposit style and the Mineral Resource estimation procedure and classification applied. HM%, S1% OS% Determination
assay data and laboratory tests	 appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Assay and laboratory procedures are industry standard, although method specifics and heavy liquid composition can vary. SL% was determined using a 45µm (39%) or 38µm (61%) screen. OS% was determined using heavy liquid TBE (2.96g/ml). The method produces a total grade as weight per cent of the primary sample. Method does not determine the relative amounts of valuable (saleable or marketable) and non-valuable heavy mineral species. See below for details of HM assemblage determination. Reference standard and blank material samples inserted at the drill site 1 each in every 40 samples. Laboratory internal standard inserted 1 in every 40 samples. Laboratory internal standard inserted 1 in every 40 samples (96% of database). The HM reference samples used are field-homogenised bulk samples with expected values and ranges determined by the Company from assay results. Blank material used is commercially available builder's sand. Reference standards and blanks are examined for performance over time and within laboratory batches. Batches or subbatches are re-analysed if unacceptable QAQC data are returned. Analysis of reference standards, blanks and laboratory repeats show the data to be of acceptable accuracy and precision for the Mineral Resource estimation procedure and classification applied. HM Assemblage Determination HM assemblage determination was by a combination of screening, magnetic separation, QEMSCAN™ and XRF assay to determine the component mineralogy of the HMC. This method is considered an industry standard, typically optimised according to the HM characteristics of individual deposits. For Thunderbird the method was designed and optimised using an iterative trial process and the results of 61 and 51 bulk sample process metallurgical testwork. HMC was screened at 106µm and each fraction weighed (stud

Criteria	JORC Code explanation	Commentary
		 HM with grainsize >106µm does not contain significant amounts of VHM). The -106µm fraction was then magnetically separated into highly-susceptible (H/S), magnetic 1, magnetic 2 and non-magnetic fractions, with each fraction weighed. The magnetic 1 & 2 fractions were combined and analysed by QEMSCAN™ for mineral determination as follows: Ilmenite: 40-70% TiO₂ >90% Liberation Leucoxene: 70-94% TiO₂ >90% Liberation High Titanium Leucoxene (HiTi Leucoxene): >94% TiO₂ >90% Liberation Zircon: 66.7% ZrO₂+HfO₂ >90% Liberation Zircon: ZrO₂+HfO₂/0.667 High Titanium Leucoxene (HiTi Leucoxene): TiO₂/0.94 Reference material was not used, other measures of accuracy and the method design is considered sufficient to establish acceptable accuracy of the data for the Mineral Resource estimation procedure and classification applied.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Data is logged electronically using "validation at point of entry" systems prior to storage in the Company's drillhole database, which is managed by Company personnel and an external consultancy. Documentation related to data custody and validation is maintained by the Company. A copy ("snapshot") of the Mineral Resource database is retained separately from the primary drillhole database. No assay data have been adjusted. The database contains 101 twinned drillholes allowing comparison of assay data between factors such as year drilled, hole diameter, drill type and assay method. Analysis of drillhole twins show the 2012 assay data (45µm screen and no attritioning step) is biased low in HM% compared with 2013 assay data (45µm screen or 38µm screen, with attritioning step). A similar high bias is seen in OS%. The bias is explained by the low energy attritioning step liberating HM from looselyheld aggregates, and the change in slimes screen from 45 µm to 38 µm used in 2013. All data was used for the current Resource estimate, this is considered appropriate because the 2012 data introduces a conservative bias. As a consequence HM grade remains underestimated for 2012 holes

Criteria	JORC Code explanation	Commentary
Location of	 Accuracy and quality of surveys used 	 rather than overestimated. The 2013 dataset is dominant in terms of number of samples, and are distributed throughout the Resource area, therefore any spatial bias is considered insignificant. The database also contains 43 twinned drillholes that allow comparison of HM assemblage data between factors such as determination method, year drilled, and HM assay method. Analysis shows HM assemblage determined by QEMSCAN™ alone on 2012 samples (90 data), and by combination magnetic separation/ QEMSCAN™/XRF on 2012 samples (106 data), has a significant bias low compared with combination magnetic separation/ QEMSCAN™/XRF on 2013 samples (459 data). This bias cannot be explained by natural (ie. deposit-related) factors, and is a result of a change in sample preparation from 2012 to 2013 (as discussed above). As a result of this analysis, HM assemblage data used in the Resource estimate includes only samples from holes drilled in 2013 (71% of the database) in order to ensure a consistent determination method across the deposit. The verification and treatment of the data is considered sufficient for the Mineral Resource estimation procedure and classification applied. Drill hole collar locations were surveyed by
data points	to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. • Specification of the grid system used. • Quality and adequacy of topographic control.	 licenced surveyors using a RTK GPS system with expected accuracy of +/- 0.02m horizontal and +/- 0.03m vertical. 3 drillholes of the 441 (0.4%) in the estimate database were not surveyed, for these holes planned coordinates have been used. Coordinates are referenced to the Map Grid of Australia (MGA) zone 51 on the Geographic Datum of Australia (GDA94). Vertical datum geoid model is AUSGEOID09 (Australia). Drillhole RL for Resource estimation is determined by projection of surveyed hole collars to a regional (Landgate) DTM model. The Mineral Resource estimate uses this model as surface topography. The average difference between surveyed and modelled RL is ~0.6m which is considered negligible given the nature of the mineralisation, and the size of the Thunderbird deposit. The quality and accuracy of the topographic control is considered sufficient for the Mineral Resource estimation for the Mineral Resource estimation procedure and classification applied.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral 	 See figures in body of announcement for hole distribution. The nominal spacing of most drill holes is 250m x 500m, with edges at 500m x 500m and 1000m x 500m. Four areas are drilled at nominal 60m hole spacing for bulk sample collection and geostatistical data

Criteria	JORC Code explanation	Commentary
	Resource and Ore Reserve estimation procedure(s) and classifications applied. • Whether sample compositing has been applied.	 analysis. The drill database used in the Resource estimate comprises 441 holes, totalling 25,953m, with 17,326 samples assayed totalling 25,876m (99.7% of metres drilled). Of that, 9,878 assayed samples totalling 14,730m (57%) are within the mineralised zones of the Resource (see below for criteria). Samples for HM assemblage determination are composited on intervals according to a combination of grade and geology appropriate to reflect resource estimation domains. 459 composites from 234 holes totalling 9,848m are used in the resource estimate. This represents 67% of the total length of drillholes within mineralised zones of the resource. The data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource estimation procedure and classification applied.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Mineralisation is flat-lying to less than 4deg. dip, vertical drill holes therefore approximate true thickness and perpendicular intersection of mineralisation. Note sections in the body of the announcement are displayed with vertical exaggeration.
Sample security	 The measures taken to ensure sample security. 	 Sample security is not considered a significant risk given the location of the deposit and bulk-nature of mineralisation. Nevertheless, the use of recognised transport providers, sample dispatch procedures directly from the field to the laboratory, and the large number of samples are considered sufficient to ensure appropriate sample security.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 All data has been validated and reviewed by at least 2 Company geologists, and by QG. No external audit or review of sample techniques or data, apart from that by QG, has been conducted. External audits are not considered necessary at this stage of the Project's development.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	Statement	Commentary			
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental 	 The Mineral Resource reported is entirely within Exploration Licence E04/2083, located on the Dampier Peninsula about 60km west of Derby, and 25km north of the sealed Great Northern Hwy joining Derby and Broome E04/2083 was granted on 05/09/2011 and is due to expire on 04/09/2016; it is held 100% by 			

Criteria	Statement	Commentary
	 settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Sheffield Resources Ltd. There are no known or experienced impediments to obtaining a licence to operate in the area. Sheffield has been operating successfully in the region for more than 2 years to date.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The Dampier project area was explored by Rio Tinto ("Rio") between 2003 and 2009. Rio completed four broadly spaced aircore drill traverses, identifying heavy mineral concentrations at Thunderbird averaging 8.07% HM with 8.0% zircon. Rio surrendered the tenements following the 2008 global financial crisis. Further details are included in Sheffield's ASX release entitled 'New Licence Granted Over High Grade Zircon Project' dated 7 September, 2011 (available from the company's website: www.sheffieldresources.com.au).
Geology	 Deposit type, geological setting and style of mineralisation. 	 The Dampier Project is within the Canning Basin in the Kimberley region of Western Australia. The Canning Basin is an intracratonic basin which contains Ordovician to Cretaceous deposits covered by Cenozoic sediments. Thunderbird is a heavy mineral sand (HMS) deposit hosted by deeply weathered Cretaceous-aged formations. Valuable heavy minerals (VHM) contained within the deposit include ilmenite, zircon, leucoxene and rutile. The mineralisation is in a thick, broad anticlinal sheet-like body striking northwest. In the core of the anticline it is at surface, rolling at about 4deg, dip about the axis, extending under cover to the southwest. The areal extent, width, grade, geological continuity and grainsize of the Thunderbird mineralisation are interpreted to indicate an off-shore, sub-wave base depositional environment. Five stratigraphic units have been defined by Sheffield geologists within the deposit area using a combination of surface mapping and drillhole lithological logs. These are referred to locally as the Fraser Beds, Reeves, Melligo, Thunderbird and Jowlaenga Formations. Of these the Thunderbird Formation representing the main mineralised unit. Also important, with the Thunderbird Formation representing the strate a distinct marker unit toward the base of the Thunderbird Formation, enabling confidence in interpretation of the extent, strike and dip of the stratigraphy. The Thunderbird Formation is described as medium to dark brown/orange, fine to very fine well sorted loose sands. It is up to 90m thick (average 38m) and is very rich in heavy minerals (up to 40% HM). It is modelled over the Resource area as at least 8.5km along strike and more than 2.5km to 5.5km wide.

Criteria Statement		Commentary		
		 Within the Formation are layers of 20cm to 1m thick iron cemented sandstone. These layers are interpreted to have been formed by post-depositional chemical processes of ferruginisation from ancient water table movements with iron oxides leached from the sand (eg. ilmenite). They occur throughout but are patchy, with extents rarely continuous between holes at 60m and 250m spacing. Also within the Formation is a continuous, very-high grade HM (>7.5%) zone named the GT Zone. This Zone is up to 29m thick (average 15m) over an area at least 7km x 3.5km, strikes approximately north-south, follows the dip of the Thunderbird Formation and is open along strike. The high-grade of HM in the GT zone is interpreted to result from deposition in off- 		
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 shore higher wave energy shoals. Exploration results relating to the drillholes used in the resource have been publicly released in numerous previous Company announcements referring to the Dampier Project and Thunderbird deposit. Information relating to the number of drillholes, assayed samples, location accuracy, orientation etc. is included in this table, and in the body of the announcement show the location of and distribution of drillholes in relation to the Mineral Resource. 		
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	• N/A		
Relationship between mineralisation widths and intercept	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is 	 Mineralisation is flat-lying to less than 4deg. dip, vertical drill holes therefore approximate true thickness. Refer to diagrams in the body of the announcement for visual representation of 		

Criteria	Statement	Commentary		
lengths	 known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	drillhole orientation vs. deposit orientation, note the vertical exaggeration used.		
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 See body of announcement for plan and cross section views and Mineral Resource tabulations. 		
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	• All information considered material to the reader's understanding of the database, estimation procedure and classification of the Mineral Resource has been reported.		
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Sheffield has previously reported deposit information for Thunderbird including a Mineral Resource estimate (2012), mineral assemblage data, heavy mineral product quality, product recoverability and product marketability. Where relevant this information has been included in the body of this announcement. 		
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large- scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 The limits to the Thunderbird mineralisation have not yet been defined. Future work may include drill testing of depth and strike extensions to the mineralisation. Work related to any potential mining development of the Thunderbird deposit, apart from that already announced by the Company is dependent on outcomes of scoping –level mining studies. This includes, but is not necessarily limited to the increased knowledge of environmental, geotechnical and hydrological aspects of the deposit. Sheffield has commenced a Scoping Study for Thunderbird, which is scheduled for completion in Q1 2014. This will incorporate the Mineral Resource reported here. 		

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section)					
Criteria	JORC Code explanation	Commentary			
Database integrity	 Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	 Drillhole data was extracted directly from the Company's drillhole database which includes internal data validation protocols. Where necessary, original drillhole log files are consulted to rectify any errors identified. Validation of the exported data was confirmed using mining software (Micromine) validation protocols, and visually in plan and section views. Compilation of data external to the drill 			

Criteria	JORC Code explanation	Commentary
		 database (eg. HM assemblage source data) is cross-checked manually, and through statistical comparison. A copy ("snapshot") of the Mineral Resource database is retained separately to the primary drillhole database. Data is further verified and validated by QG upon receipt, and prior to use in the estimation.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	 Mr Teakle has visited the Thunderbird site and the primary assay laboratory on numerous occasions during 2012 and 2013, during operations. Mr Strickland inspected the Thunderbird site and the primary assay laboratory in 2013, during operations. Where material, information relating to observations from these visits has been included in this announcement.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 As described above, Sheffield geologists have defined five stratigraphic units within the deposit area using a combination of surface mapping and drillhole lithological logs. For the purposes of resource estimation, these units were used in combination with grade criteria to define four mineralised domains, as follows: B1 (north) and B2 (south): within Reeves Fm., grade criteria >1% HM, >6m width, >6m separation stratigraphically above the Thunderbird Fm. T1: Thunderbird Fm., grade criteria: HM >1-2% and <7.5-10%, >6m width, <6m internal waste T2: Thunderbird Fm. GT Zone within T1, grade criteria HM >7.5-10%, >6m width, <6m internal waste T2: Thunderbird Fm. GT Zone within T1, grade criteria HM >7.5-10%, >6m width, <6m internal waste T2: however geological continuity overrides grade rules where necessary. It is useful to note however that primary HM% (and SL% and OS%) is a physical characteristic of the geological units related to unit deposition. There is good confidence in the geological interpretation of the deposit. Logged data from 441 drillholes as well as surface geology has been used to develop the interpretation and this is supported by HM%, SL% and OS% assays. The result is excellent geological (and grade) continuity in the model (see diagrams above), as expected for this style of HM deposit. Examination of grade shells and the resource grade-tonnage curve indicate the greatest change in the deposit in terms of tonnage vs grade occurs between cutoff grades of 2.5 and 5.5%HM. Also, the deposit outline remains coherent up to 13% HM cutoff. These thresholds are well within the corresponding geological domains and so changes to these domains through alternative interpretations

Criteria	JORC Code explanation	Commentary		
		 are unlikely to significantly affect the Mineral Resource as reported. The resource T1 domain imposes an approximately 1-2% HM cutoff on the resource, and at its upper boundary corresponds closely with a natural geological boundary (between Reeves and Thunderbird Formations). This allows higher cutoff grades (eg. 3% as reported) to be applied and as such any change to this boundary is unlikely to significantly affect the Mineral Resource as reported. 		
Dimensions	• The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 At 3% HM cut-off the resource covers an area about 8km long by 2.5km to 5.5km wide, and remains open in all directions. The mineralisation occurs as a thick, broad anticlinal sheet-like body striking northwest, extending from surface to a maximum depth of 153m. The average depth to the top of mineralisation is 21m and the average mineralised thickness is 47m. The dip of the deposit changes from flat to low angle along the north-eastern flank, to 4 degrees along the south-western flank, resulting in around 32% of the total resource area occurring within 6m of surface. At 7.5% HM cut-off the resource covers an area about 7km long by 2.5km to 4.5km wide, and remains open to the north and south. The mineralisation follows the dip of the resource above 3% but strikes north-south, extending from 1m below surface to a maximum depth of 112m. The average depth to the top of mineralisation is 36m and the average mineralised thickness is 15m. Approximately one quarter of the >7.5% resource area is within 15m of surface. 		
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage characterisation). In the case of block model interpolation, the block size in relation to the average sample spacing and 	 Heavy mineral (HM), slime, oversize, zircon, HiTi leucoxene, leucoxene and ilmenite material percentages were estimated using ordinary kriging (OK) into blocks of dimension 250m East, by 500m North by 1.5m RL. These block dimensions were selected to reflect the drill density of the deposit and the intended use of the model. Sub-cells to a minimum dimension of 50m E by 100m N by 0.5m RL were used to represent volume. Exploratory data analysis and estimation was undertaken in Isatis software. Estimation parameters were chosen after taking into account output kriging estimation statistics, variogram models and data geometry. Grade estimates were constrained to low grade (>1% HM) and high grade (>7.5% HM) domains. All variables were estimated separately. Grade capping was applied to HM%, slime% and oversize%. The cap-values were based on examination of the tail of the histogram. 		

Criteria	JORC Code explanation	Commentary		
	 the search employed. Any assumptions behind modelling of selective mining units. Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. Discussion of basis for using or not using grade cutting or capping. The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available. 	 slime and oversize was 1500m x 1200m x 150m, with long axis oriented towards 310° and a 1.5° dip towards 220°. The search used two angular sectors with a minimum of six samples and a maximum of 20 per sector. The optimum and maximum number of samples used per drillhole was between five and eight. The search used for the estimation of zircon, HiTi leucoxene, leucoxene, and ilmenite material was 2250m x 1800m x 225m, long axis oriented towards 310° and a 1.5° dip towards 220°. The search used a minimum of four samples and a maximum of 14. Estimates were validated visually in Minesight's 3D graphical environment, by examining reproduction of global estimation statistics, and by comparing semi-local reproduction of grade in swath plots. 		
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content. 	 Tonnages are estimated on a dry basis 		
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	 The Mineral Resource estimate of the Thunderbird deposit has been reported at a 3% HM and 7.5% HM cut-off. These cut-off grades were selected by SFX based on preliminary technical and economic assessment, and on comparison with similar deposits currently or recently being mined. QG have reviewed the parameters used to support these cut-offs grades and believe these to be reasonable. At a 3% HM cutoff, the HM grade of the Thunderbird Resource is 6.5%, and the in-situ VHM grade is 2.75%. This compares favourably with other HMS deposits either recently or currently being mined. The 7.5% HM cutoff is chosen to represent the very-high grade, continuous component of the Mineral Resource which may become the starting point of any future mining operations. In addition, spatially the 7.5% HM threshold is associated with a grade-geological boundary throughout the deposit, which was domained separately for the purposes of resource estimation. The grade-tonnage curve is included in the body of the announcement (Figure 8) to show the impact of cutoff grade versus total resource tonnage. 		
Mining factors or assumptions	 Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral 	 In determining the reasonable prospects for eventual economic extraction, potential mining methods considered are either dry- mining dozer-trap, or dredge mining operations, similar to those commonly and currently in use in HM mining operations both in Australia and globally. The thickness, areal extent, and continuous nature of the mineralisation at Thunderbird are such that both selective and non- selective bulk mining methods can be 		

Criteria	JORC Code explanation	Commentary		
	Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 appropriately considered. These assumptions were also considered when determining resource block sizes, and resource classification. On the basis of these assumptions, the Company considers there are no mining factors which are likely to affect the assumption that the deposit has reasonable prospects for eventual economic extraction. 		
Metallurgical factors or assumptions	• The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	 As discussed earlier in this table, and in the body of the announcement, the Company has conducted bulk process metallurgical studies on 6t and 5t bulk samples from Thunderbird for the purpose of developing a process flowsheet for the deposit. The results of this work were used to design and optimise the method used to determine the HM assemblage reported in the Mineral Resource. The results of this work are sufficient for the Company to expect the Thunderbird mineralisation will be amenable to treatment with conventional mineral sands processing techniques. On the basis of these studies, the Company considers there are no metallurgical factors which are likely to affect the assumption that the deposit has reasonable prospects for eventual economic extraction. 		
Environmen- tal factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	 The Company has completed Level 1 and Level 2 flora and fauna surveys at Thunderbird, and preliminary hydrogeological investigations. On the basis of these studies, the Company considers there are no environmental factors which are likely to affect the assumption that the deposit has reasonable prospects for eventual economic extraction. 		
Bulk density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 No direct measurements of bulk density have been taken. Bulk density is assumed from a proprietary industry-standard formula which accounts for the HM and Slimes content of sand deposits. The resultant values are considered to be consistent with observations of the material compared with other HM deposits with known BD values. 		

Criteria	JORC Code explanation	Commentary		
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	were used to define zones of different classification.		
Audits or reviews	 The results of any audits or reviews of Mineral Resource estimates. 	 The Mineral Resource has been audited internally as part of normal validation processes both by the Company and QG. No external audit or review of the Mineral Resource has been conducted, external audits are not considered necessary at this stage of the Project's development. 		
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence should be compared with production data, where available. 	 No geostatistical studies have been performed to quantify the relative confidence in the estimate. Such a study is not considered necessary at this stage of the Project's development. Global estimates of tonnage and heavy mineral content are considered to have a high level of confidence. Local estimates are inevitably less confident, but the relative level of risk is considered low, with the relative level of risk reflected by classification. The factors considered to present relatively higher sources of risk in the estimate are data quality and mineral assemblage. Geological interpretation and estimation are considered to present low risk. No production has occurred from the deposit. 		

Appendix 2: QG Thunderbird Mineral Resource Statement Memorandum

- Following pages (p27 to p31) -

Memorandum

То:	Sheffield Resources Ltd
From:	Trent Strickland

Date:18 March 2014Subject:Thunderbird Mineral Sands Deposit Resource Statement

This document presents the Mineral Resource Statement for the Thunderbird deposit, Western Australia.

Thunderbird Mineral Resource Statement

QG has provided Sheffield Resources Ltd (SFX) with a resource model for the Thunderbird heavy mineral sands deposit. The estimate is based on aircore (AC) and reverse circulation (RC) drilling data collected by SFX in 2012 and 2013.

The Thunderbird deposit is located within the Canning Basin in the Kimberley region of Western Australia. Thunderbird is a heavy mineral sand (HMS) deposit hosted by deeply weathered Cretaceous-aged sand formations. The deposit is at least 8km along strike and at least 2.5km to 5.5km wide, and remains open in all directions. Mineralisation occurs from surface to depths of up to 150m, with an average thickness of around 50m. The areal extent, width, grade, geological continuity and grainsize of the Thunderbird mineralisation are suggestive of an off-shore, sub-wave base depositional environment.

The drill database used to define the Mineral Resource comprises 441 vertical AC and RC drillholes, for a total of 25,953.2m, with 17,326 samples assayed totalling 25,875.6m. Of that, 9,878 assayed samples totalling 14,730.4m are within the mineralised zones of the Resource.

The nominal drill spacing is approximately $250m \times 500m$ with the margins of the deposit drilled at a spacing of $500m \times 500m$ and $1000m \times 500m$. Four separate close-spaced 'crosses' have been drilled at a nominal spacing of 60m both along and across strike.

QG reviewed the quality of drill data (location, sampling and assay quality) and conclude that the data is of acceptable quality for use in resource estimation and subsequent mine planning.

New wireframe solid model interpretations of mineralisation were made by SFX based on geological logging and heavy mineral (HM) content, using thresholds of ~1% HM to define a low grade domain and 7.5% HM to define a high grade domain. QG assessed the robustness of these domains by critically examining the geological interpretation and using a variety of measures including statistical and geostatistical analysis. The domains are considered geologically robust in the context of the resource classification applied to the estimate.

Ordinary Kriging was used to estimate HM%, slime% and oversize%. The search neighbourhood employed was optimised using Quantitative Kriging Neighbourhood Analysis (QKNA). Density was assigned globally to the estimated domains. Hard boundaries were applied to estimation within mineralisation domains. Grade capping was applied to HM%, slime% and oversize%. The cap values were based on examination of the tail of the histogram and local grade distribution.

The mineral assemblage of the Thunderbird Mineral Resource was estimated from mineralogical analyses of 459 composites created from 234 holes totalling 9,848.5m from the 2013 drilling program. Analysis was by a combination of screening, magnetic separation followed by QEMSCAN analysis of the magnetic component, and XRF determination of the non-magnetic component. Details of mineralogical calculations are provided in the footnotes to resource tabulations. The 2013 mineralogical data was also supplemented with the average mineralogy of a 6t bulk sample, sourced from the 2012 'cross' of 60m spaced drilling. The composites consisted of samples taken from discrete intervals from within five geological units across multiple holes and combined. The composites were very well distributed throughout the deposit. Ordinary Kriging was used to estimate zircon%, high titanium ('HiTi') leucoxene %, leucoxene %, and ilmenite %.

The estimate was validated by QG as follows:

- A visual checking of the interpolation results compared with drilling in both plan and section;
- Global input vs. output statistics were compared, including clustered and declustered composites; and
- Semi-local input vs. output statistics using moving window averages.

The estimate is considered to be robust on the basis of the above checks.

The estimate has been classified into Measured, Indicated and Inferred Resources according to the JORC 2012 code, taking into account data quality, data density, geological continuity, grade continuity and confidence in estimation of heavy mineral content and mineral assemblage. In plan, polygons were used to define zones of different classification. Measured Resources are restricted to the four separate 'crosses' of close-spaced drilling, where drill spacing is 60m along strike and 60m across strike. Indicated Resources are defined where drilling is at 500m

FROM COMPLEXITY TO CLARITY. centres along strike, by 250m or better. Inferred Resources are defined around the margins of Indicated Resource, where the drill spacing is reduced to 500m x 500m.

The Mineral Resource estimate of the Thunderbird deposit has been reported at a 3% HM and 7.5% HM cut-off. These cut-off grades were selected by SFX based on preliminary technical and economic assessment, and on comparison with similar deposits currently or recently being mined. Based on the same technical and economic assessment, and taking into consideration the thickness, grades and depth of the deposit, it is considered that the entire deposit has a reasonable prospect of eventually being mined, and that the current extents of the deposit are limited by drilling. The Mineral Resource estimate of the Thunderbird deposit, as at the 18th March 2014, is summarised in Table 1 and Table 2.

Mineral Resource Category	Million Tonnes ¹	Bulk Density	HM %	Slimes %	Osize %	In-situ HM Million Tonnes ¹
Measured	75	2.1	7.5	19	11	6
Indicated	1,805	2.1	6.8	17	9	122
Inferred	740	2.0	5.7	15	9	42
TOTAL	2,620	2.1	6.5	17	9	170

Mineral Resource Category	Million Tonnes ¹	HM %	Valuable HM Grade (% In-situ) ²			
			Zircon	HiTi Leucoxene	Leucoxene	Ilmenite
Measured	75	7.5	0.68	0.20	0.18	2.2
Indicated	1,805	6.8	0.56	0.19	0.20	1.9
Inferred	740	5.7	0.49	0.17	0.20	1.6
TOTAL	2,620	6.5	0.55	0.18	0.20	1.8

Mineral Resource Category	In-situ HM Million Tonnes ¹	Mineral Assemblage (as % of HM) ³					
		Zircon	HiTi Leucoxene	Leucoxene	Ilmenite	Valuable HM%	
Measured	6	9.1	2.7	2.4	30	44	
Indicated	122	8.3	2.7	2.9	28	42	
Inferred	42	8.5	2.9	3.5	29	44	
TOTAL	170	8.4	2.8	3.0	28	42	

¹ All tonnages and grades have been rounded to reflect the relative uncertainty of the estimate, thus sum of columns may not equal. ² The In-situ grade is determined by multiplying the percentage of HM by the percentage of each valuable heavy mineral within the heavy mineral assemblage.

³ Estimates of Mineral Assemblage are presented as percentages of the Heavy Mineral (HM) component of the deposit, as determined by magnetic separation, QEMSCAN and XRF. Magnetic fractions were analysed by QEMSCAN for mineral determination as follows: Ilmenite: 40-70% TiO2 >90% Liberation; Leucoxene: 70-94% TiO2 >90% Liberation; High Titanium Leucoxene (HiTi Leucoxene): >94% TiO2 >90% Liberation; and Zircon: 66.7% ZrO2+HfO2 >90% Liberation. The non-magnetic fraction was submitted for XRF analysis and minerals determined as follows: Zircon: ZrO2+HfO2/0.667 and High Titanium Leucoxene (HiTi Leucoxene): TiO2/0.94.

Table 1. Thunderbird Mineral Resource Estimate at a cut-off grade of 3% HM.

Mineral Resource Category	Million Tonnes ¹	Bulk Density	HM %	Slimes %	Osize %	In-situ HM Million Tonnes ¹
Measured	30	2.2	12.2	18	14	4
Indicated	545	2.1	12.5	16	11	68
Inferred	165	2.0	10.9	14	10	18
TOTAL	740	2.1	12.1	16	11	89

Mineral Resource Category	Material Million Tonnes ¹	HM %	Valuable HM Grade (% In-situ) ²			
			Zircon	HiTi Leucoxene	Leucoxene	Ilmenite
Measured	30	12.2	1.1	0.32	0.26	3.6
Indicated	545	12.5	0.94	0.29	0.25	3.5
Inferred	165	10.9	0.84	0.27	0.24	3.2
TOTAL	740	12.1	0.92	0.29	0.25	3.4

Mineral Resource Category	In-situ HM Million Tonnes ¹	Mineral Assemblage (as % of HM) ³					
		Zircon	HiTi Leucoxene	Leucoxene	Ilmenite	Valuable HM%	
Measured	4	8.7	2.6	2.2	30	43	
Indicated	68	7.5	2.3	2.0	28	40	
Inferred	18	7.6	2.5	2.2	29	41	
TOTAL	89	7.6	2.4	2.1	28	40	

¹ All tonnages and grades have been rounded to reflect the relative uncertainity of the estimate, thus sum of columns may not equal. ² The In-situ grade is determined by multiplying the percentage of HM by the percentage of each valuable heavy mineral within the heavy mineral assemblage.

³ Estimates of Mineral Assemblage are presented as percentages of the Heavy Mineral (HM) component of the deposit, as determined by magnetic separation, QEMSCAN and XRF. Magnetic fractions were analysed by QEMSCAN for mineral determination as follows: Ilmenite: 40-70% TiO2 >90% Liberation; Leucoxene: 70-94% TiO2 >90% Liberation; High Titanium Leucoxene (HiTi Leucoxene): >94% TiO2 >90% Liberation; and Zircon: 66.7% ZrO2+HfO2 >90% Liberation. The non-magnetic fraction was submitted for XRF analysis and minerals determined as follows: Zircon: ZrO2+HfO2/0.667 and High Titanium Leucoxene (HiTi Leucoxene): TiO2/0.94.

Table 2. Thunderbird Mineral Resource Estimate at a cut-off grade of 7.5% HM.

Yours faithfully,

Trent Strickland Senior Consultant

Competent Persons Statements

The information in this report that relates to Mineral Resources is based on information compiled by Mr Trent Strickland, who is a Member of the Australasian Institute of Mining and Metallurgy (AusIMM). Mr Strickland is a full time employee of QG and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Strickland consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.